圓x2+y2-2x-2y+1=0上的點(diǎn)到直線x-y=2的距離的最大值是
 
分析:把圓的方程化為標(biāo)準(zhǔn)方程后,找出圓心坐標(biāo)和半徑r,利用點(diǎn)到直線的距離公式求出圓心到已知直線的距離d,求出d+r即為所求的距離最大值.
解答:解:把圓的方程化為標(biāo)準(zhǔn)方程得:(x-1)2+(y-1)2=1,
所以圓心坐標(biāo)為(1,1),圓的半徑r=1,
所以圓心到直線x-y=2的距離d=
|1-1-2|
2
=
2
,
則圓上的點(diǎn)到直線x-y=2的距離最大值為d+r=
2
+1.
故答案為:
2
+1
點(diǎn)評(píng):此題考查了點(diǎn)到直線的距離公式,找出圓上的點(diǎn)到已知直線的距離最大值為d+r是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓x2+y2-2x-1=0關(guān)于直線2x-y+3=0對(duì)稱的圓的方程是( 。
A、(x+3)2+(y-2)2=
1
2
B、(x-3)2+(y+2)2=
1
2
C、(x+3)2+(y-2)2=2
D、(x-3)2+(y+2)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)圓x2+y2+2x+ky+k2=0的面積最大時(shí),圓心坐標(biāo)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)(2,1)的直線中,被圓x2+y2-2x-4y=0截得的弦長(zhǎng)最短的直線方程為
x-y-1=0
x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓x2+y2-2x+6y+9=0的周長(zhǎng)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓 x2+y2=4與圓x2+y2-2x+y-5=0相交,則它們的公共弦所在的直線方程是
2x-y+1=0
2x-y+1=0

查看答案和解析>>

同步練習(xí)冊(cè)答案