已知原命題“兩個(gè)無(wú)理數(shù)的積仍是無(wú)理數(shù)”,則:
(1)逆命題是“乘積為無(wú)理數(shù)的兩數(shù)都是無(wú)理數(shù)”;
(2)否命題是“兩個(gè)不都是無(wú)理數(shù)的積也不是無(wú)理數(shù)”;
(3)逆否命題是“乘積不是無(wú)理數(shù)的兩個(gè)數(shù)都不是無(wú)理數(shù)”;
其中所有正確敘述的序號(hào)是   
【答案】分析:根據(jù)四種命題之間的關(guān)系分別寫(xiě)出逆命題、否命題和逆否命題.
解答:解:(1)交換原命題的條件和結(jié)論得到逆命題:“乘積為無(wú)理數(shù)的兩數(shù)都是無(wú)理數(shù)”,正確.
(2)同時(shí)否定原命題的條件和結(jié)論得到否命題:“兩個(gè)不都是無(wú)理數(shù)的積也不是無(wú)理數(shù)”,正確.
(3)同時(shí)否定原命題的條件和結(jié)論,然后在交換條件和結(jié)論得到逆否命題:“乘積不是無(wú)理數(shù)的兩個(gè)數(shù)不都是無(wú)理數(shù)”.所以逆否命題錯(cuò)誤.
故答案為:(1)(2).
點(diǎn)評(píng):本題主要考查四種命題之間的關(guān)系,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知原命題“兩個(gè)無(wú)理數(shù)的積仍是無(wú)理數(shù)”,則:
(1)逆命題是“乘積為無(wú)理數(shù)的兩數(shù)都是無(wú)理數(shù)”;
(2)否命題是“兩個(gè)不都是無(wú)理數(shù)的積也不是無(wú)理數(shù)”;
(3)逆否命題是“乘積不是無(wú)理數(shù)的兩個(gè)數(shù)都不是無(wú)理數(shù)”;
其中所有正確敘述的序號(hào)是
(1)(2)
(1)(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α、β是兩個(gè)不同的平面,下列四個(gè)命題是“面α∥面β”的充分條件的為( 。
A、存在一條直線(xiàn)a,a?面α且a∥面βB、存在一個(gè)平面γ,γ⊥α,γ⊥βC、存在兩條平行直線(xiàn)a、b,a?α,b?β,a∥β且b∥αD、存在兩條異面直線(xiàn)a、b,a?α,b?β,a∥β且b∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知原命題“兩個(gè)無(wú)理數(shù)的積仍是無(wú)理數(shù)”,則:
(1)逆命題是“乘積為無(wú)理數(shù)的兩數(shù)都是無(wú)理數(shù)”;
(2)否命題是“兩個(gè)不都是無(wú)理數(shù)的積也不是無(wú)理數(shù)”;
(3)逆否命題是“乘積不是無(wú)理數(shù)的兩個(gè)數(shù)都不是無(wú)理數(shù)”;
其中所有正確敘述的序號(hào)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知原命題“兩個(gè)無(wú)理數(shù)的積仍是無(wú)理數(shù)”,則:
(1)逆命題是“乘積為無(wú)理數(shù)的兩數(shù)都是無(wú)理數(shù)”;
(2)否命題是“兩個(gè)不都是無(wú)理數(shù)的積也不是無(wú)理數(shù)”;
(3)逆否命題是“乘積不是無(wú)理數(shù)的兩個(gè)數(shù)都不是無(wú)理數(shù)”;
其中所有正確敘述的序號(hào)是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案