已知圓C和y軸相切,圓心在直線x-3y=0上,且被直線y=x截得的弦長為
(1)求圓C的方程.
(2)若圓心在第一象限,求過點(6,5)且與該圓相切的直線方程.
【答案】分析:(1)由圓心在直線x-3y=0上,設(shè)出圓心坐標,再根據(jù)圓與y軸相切,得到圓心到y(tǒng)軸的距離即圓心橫坐標的絕對值等于圓的半徑,表示出半徑r,然后過圓心作出弦的垂線,根據(jù)垂徑定理得到垂足為弦的中點,利用點到直線的距離公式求出圓心到直線y=x的距離d,由弦長的一半,圓的半徑r及表示出的d利用勾股定理列出關(guān)于t的方程,求出方程的解得到t的值,從而得到圓心坐標和半徑,根據(jù)圓心和半徑寫出圓的方程即可.
(2)圓心在第一象限的圓是(x-3)2+(y-1)2=9,設(shè)過點(6,5)且與該圓相切的直線方程為y-5=k(x-6),即kx-y+5-6k=0,由圓心O(3,1),半徑r=3,知,由此能求出切線方程.
解答:解:(1)設(shè)圓心為(3t,t),半徑為r=|3t|,
則圓心到直線y=x的距離 ,

∴(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.
(2)圓心在第一象限的圓是(x-3)2+(y-1)2=9,
設(shè)過點(6,5)且與該圓相切的直線方程為y-5=k(x-6),即kx-y+5-6k=0,
∵圓心O(3,1),半徑r=3,
,
解得k=
∴當切線的斜率k存在時,其方程為y-5=(x-6),
即7x-24y+78=0.
當切線的斜率k不存在時,其方程為x=6.
故切線方程為7x-24y+78=0,或x=6.
點評:第(1)題綜合考查了垂徑定理,勾股定理及點到直線的距離公式.根據(jù)題意設(shè)出圓心坐標,找出圓的半徑是解本題的關(guān)鍵.第(2)考查了圓的切線方程的求法,易錯點是當切線的斜率不存在時,容易丟解.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知圓C和y軸相切,圓心在直線x-3y=0上,且被直線y=x截得的弦長為2
7
,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C和y軸相切,圓心在x-3y=0上,且被直線y=x截得的弦長為2
7
,則圓C的方程為
(x-3)2+(y-1)2=9 或(x+3)2+(y+1)2=9
(x-3)2+(y-1)2=9 或(x+3)2+(y+1)2=9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C和y軸相切,圓心在直線x-3y=0上,且被直線y=x截得的弦長為2
7

(1)求圓C的方程.
(2)若圓心在第一象限,求過點(6,5)且與該圓相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C和y軸相切,圓心C在直線上,且被直線y=x截得的弦長為,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓Cy軸相切,圓心在直線x-3y=0上,且被直線yx截得的弦長為2,求圓C的方程.

查看答案和解析>>

同步練習冊答案