判斷函數(shù)f(x)=x2+2x在(-1,+∞)的單調(diào)性,并用函數(shù)單調(diào)性的定義給出證明.

解:函數(shù)f(x)為增函數(shù),
證明如下:設(shè)x1,x2∈(-1,+∞),且x1<x2,
則f(x1)-f(x2)=x12+2x1-(x22+2x2)=x12-x22+(2x1-2x2
=(x1+x2)(x1-x2)+2(x1-x2)=(x1-x2)(x1+x2+2)
∵x1,x2,∈(-1,+∞),且x1<x2,
∴x1-x2<0,x1+x2+2>0
∴(x1-x2)(x1+x2+2)<0
即f(x1)-f(x2)>0,f(x1)>f(x2
∴函數(shù)f(x)在(-1,+∞)上為增函數(shù).
分析:利用定義判斷函數(shù)的單調(diào)性,先設(shè)在所給區(qū)間上有任意兩個(gè)自變量x1,x2,且x1<x2,再用作差法比較f(x1)與
f(x2)的大小,做差后,應(yīng)把差分解為幾個(gè)因式的乘積的形式,通過判斷每一個(gè)因式的正負(fù),來判斷積的正負(fù),最后的出結(jié)論.
點(diǎn)評(píng):本題主要考查了定義法證明函數(shù)的單調(diào)性,做題時(shí)應(yīng)該嚴(yán)格按照步驟去做.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于定義在區(qū)間D上的函數(shù)f(x)和g(x),如果對(duì)于任意x∈D,都有|f(x)-g(x)|≤1成立,那么稱函數(shù)f(x)在區(qū)間D上可被函數(shù)g(x)替代.
(1)若f(x)=
x
2
-
1
x
,g(x)=lnx
,試判斷在區(qū)間[[1,e]]上f(x)能否被g(x)替代?
(2)記f(x)=x,g(x)=lnx,證明f(x)在(
1
m
,m)(m>1)
上不能被g(x)替代;
(3)設(shè)f(x)=alnx-ax,g(x)=-
1
2
x2+x
,若f(x)在區(qū)間[1,e]上能被g(x)替代,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)判斷函數(shù)f(x)=x+
4
x
在x∈(0,+∞)上的單調(diào)性并證明你的結(jié)論?
(2)猜想函數(shù)f(x)=x+
a
x
,(a>0)
在x∈(-∞,0)∪(0,+∞)上的單調(diào)性?(只需寫出結(jié)論,不用證明)
(3)利用題(2)的結(jié)論,求使不等式x+
9
x
-2m2+m<0
在x∈[1,5]上恒成立時(shí)的實(shí)數(shù)m的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)判斷函數(shù)f(x)=x+
4
x
在x∈(0,+∞)上的單調(diào)性并證明你的結(jié)論?
(2)猜想函數(shù)f(x)=x+
a
x
,(a>0)
在x∈(-∞,0)∪(0,+∞)上的單調(diào)性?(只需寫出結(jié)論,不用證明)
(3)利用題(2)的結(jié)論,求使不等式x+
9
x
-2m2+m<0
在x∈[1,5]上恒成立時(shí)的實(shí)數(shù)m的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0116 月考題 題型:解答題

(1) 判斷函數(shù)f(x)=x+在x∈(0,+∞)上的單調(diào)性并證明你的結(jié)論?
(2)猜想函數(shù)f(x)=x+,(a>0)在x∈(-∞,0)∪(0,+∞)上的單調(diào)性?(只需寫出結(jié)論,不用證明)
(3)利用題(2)的結(jié)論,求使不等式x+-m2<0在x∈[1,5]上恒成立時(shí)的實(shí)數(shù)m的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省惠州一中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù)f(x)的定義域?yàn)镽,當(dāng)x<0時(shí)f(x)>1,且對(duì)任意的實(shí)數(shù)x,y∈R,有f(x+y)=f(x)f(y).?dāng)?shù)列{an}滿足
(Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得點(diǎn)(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當(dāng)n>M時(shí),an>0恒成立?若存在,求出M的最小值,若不存在,請(qǐng)說明理由;
(Ⅲ)若a1=f(0),不等式對(duì)不小于2的正整數(shù)恒成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案