5.若拋物線y2=2px(p>0)上的點$A({x}_{0},\sqrt{2})$到其焦點的距離是A到y(tǒng)軸距離的3倍,則P=2.

分析 根據(jù)拋物線的定義及題意可知3x0=x0+$\frac{p}{2}$,得出x0求得p,可得答案.

解答 解:由題意,3x0=x0+$\frac{p}{2}$,∴x0=$\frac{p}{4}$,
∴$\frac{{p}^{2}}{2}$=2,
∵p>0,
∴p=2,
故答案為2.

點評 本題主要考查了拋物線的定義和性質(zhì).考查了考生對拋物線定義的掌握和靈活應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如果直線 x+2ay-1=0與直線(3a-1)x-ay-1=0平行,則系數(shù)a的值為( 。
A.0或6B.0或$\frac{1}{6}$C.6或 $\frac{1}{6}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的前n項和${S_n}={n^2}+{a_n}-1$,且a1,a4是等比數(shù)列{bn}的前兩項,記bn與bn+1之間包含的數(shù)列{an}的項數(shù)為cn,如b1與b2之間包含{an}中的項為a2,a3,則c1=2.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求數(shù)列{ancn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)證明:若實數(shù)a,b,c成等比數(shù)列,n為正整數(shù),則an,bn,cn也成等比數(shù)列;
(2)設(shè)z1,z2均為復(fù)數(shù),若z1=1+i,z2=2-i,則$|{{z_1}•{z_2}}|=\sqrt{2}×\sqrt{5}=\sqrt{10}$;若z1=3-4i,z2=4+3i,則|z1•z2|=5×5=25;若${z_1}=\frac{1}{2}-\frac{{\sqrt{3}}}{2}$,${z_2}=-\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{2}}}{2}i$,則|z1•z2|=1×1=1.通過這三個小結(jié)論,請歸納出一個結(jié)論,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知曲線f(x)=x2+a在點(1,f(1))處切線的斜率等于f(2),則實數(shù)a值為(  )
A.-2B.-1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ax-lnx,函數(shù)g(x)=$\frac{1}{3}b{x}^{3}$-bx,a∈R,b∈R且b≠0.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若a=1,且對任意的x1(1,2),總存在x2∈(1,2),使f(x1)+g(x2)=0成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知向量$\overrightarrow{a}$=(2,m),$\overrightarrow$=(1,-2)若$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow$)=$\overrightarrow$2+m2,則實數(shù)m等于( 。
A.$\frac{1}{2}$B.$\frac{5}{2}$C.$\frac{\sqrt{5}}{4}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知正項數(shù)列{an}的前n項和為Sn,當n≥2時,(an-Sn-12=SnSn-1,且a1=1,設(shè)b${\;}_{n}=lo{g}_{2}\frac{{a}_{n+1}}{6}$,則b1+b2+…+b10等于(  )
A.64B.72C.80D.90

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在△ABC中,內(nèi)角A、B、C所對的邊分別是a、b、c,$B=\frac{π}{3}$,a=2.
(Ⅰ)若$A=\frac{π}{4}$,求c;
(Ⅱ)若△ABC的面積為$\frac{3\sqrt{3}}{2}$,求b.

查看答案和解析>>

同步練習(xí)冊答案