17.已知圓C經(jīng)過M(3,-3),N(-2,2)兩點,且在y軸上截得的線段長為$4\sqrt{3}$.
(Ⅰ)求圓C的方程;
(Ⅱ)若直線l∥MN,且l與圓C交于點A,B,且以線段AB為直徑的圓經(jīng)過坐標原點,求直線l的方程.

分析 (Ⅰ)由已知M,N兩點求出線段MN的垂直平分線的方程,得到圓心C(a,a-1),尋找未知數(shù)之間的關系是求圓的方程的關鍵,注意弦長問題的處理方法;
(Ⅱ)利用直線的平行關系設出直線的方程,利用設而不求的思想得到關于所求直線方程中未知數(shù)的方程,通過方程思想確定出所求的方程,注意對所求的結果進行驗證和取舍.

解答 解:(Ⅰ)圓C經(jīng)過M(3,-3),N(-2,2)兩點,則線段MN的垂直平分線的方程是y+$\frac{1}{2}$=x-$\frac{1}{2}$,即y=x-1,
∴圓心C(a,a-1).
又由在y軸上截得的線段長為4$\sqrt{3}$,
得(a-3)2+(a+2)2=12+a2,解得:a=1.
故圓C的方程為(x-1)2+y2=13;
(Ⅱ)設直線l的方程為y=-x+m,
則A(x1,m-x1),B(x2,m-x2
聯(lián)立$\left\{\begin{array}{l}{y=-x+m}\\{(x-1)^{2}+{y}^{2}=13}\end{array}\right.$,得2x2-(2+2m)x+m2-12=0.
由△>0,∴m2-2m-25<0
∴x1+x2=1+m,x1x2=$\frac{{{m^2}-12}}{2}$.
則由題意可知OA⊥OB,即kOA•kOB=-1
∴$\frac{{(m-{x_1})}}{x_1}•\frac{{(m-{x_2})}}{x_2}=-1$,即m2-m•(1+m)+m2-12=0,
∴m=4或m=-3.經(jīng)驗證符合△>0,
∴y=-x+4或y=-x-3.

點評 本題考查直線與圓的綜合問題,考查直線方程的求解方法和圓方程的求解方法,注意待定系數(shù)法的運用,考查學生對直線與圓相交弦長有關問題的處理方法,考查設而不求思想的運用,考查方程思想和轉化與化歸的思想,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)f(x)=2x+1的導數(shù)為f′(x),則f′(0)=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{1+2lnx}{x^2}$.
(1)求f(x)的單調區(qū)間;
(2)存在x1,x2∈(1,+∞)且x1≠x2,使|f(x1)-f(x2)|≥k|lnx1-lnx2|成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.求拋物線y=x2與直線x+y=2所圍圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=ex,g(x)=lnx+1,
(1)求函數(shù)h(x)=f(x-1)-g(x)在區(qū)間[1,+∞)上的最小值;
(2)已知1≤y<x,求證:ex-y-1>lnx-lny;
(3)設H(x)=(x-1)2f(x),在區(qū)間(1,+∞)內是否存在區(qū)間[a,b](a>1),使函數(shù)H(x)在區(qū)間[a,b]的值域也是[a,b]?請給出結論,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.給出下列四個命題,其中不正確的命題為( 。
①若cos α=cos β,則α-β=2kπ,k∈Z;
②函數(shù)y=2cos$\frac{x}{3}$的圖象關于x=$\frac{π}{12}$對稱;
③函數(shù)y=cos(sin x)(x∈R)為偶函數(shù);
④函數(shù)y=sin|x|是周期函數(shù),且周期為2π.
A.①②B.①④C.①②③D.①②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=sinxcosx-sin2($\frac{π}{4}$-x).
(1)求函數(shù)f(x)的對稱軸方程;
(2)求函數(shù)y=f(x-$\frac{π}{8}$)在x∈[0,$\frac{π}{2}$]上的最大值與最小值以及取得最值時相應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.某數(shù)學興趣小組舉行了一次趣味口答競賽,共有5名同學參加.競賽分兩個環(huán)節(jié):搶答環(huán)節(jié)和抽答環(huán)節(jié),其中搶答環(huán)節(jié)共有4道題,抽答環(huán)節(jié)僅有1道題.
(1)假設搶答環(huán)節(jié)每人搶答成功的概率均相等,則甲同學成功搶答2次的概率是$\frac{96}{625}$;
(2)已知搶答環(huán)節(jié)有3名同學成功搶答,抽答環(huán)節(jié)從裝有5名同學名簽的紙盒中隨機抽。旱谝淮尾扇∮蟹呕氐爻槿。舻谝淮纬榈降氖菗尨鸪晒Φ耐瑢W,則從第二次開始采取無放回地抽取,整個抽答環(huán)節(jié)抽到未搶答成功的同學即停止.那么抽取的次數(shù)X的數(shù)學期望E(X)=2.2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若復數(shù)z滿足(1+i)z=2-i,則在復平面內,z的共軛復數(shù)的實部與虛部的積為( 。
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{3}{4}i$D.$-\frac{3}{4}i$

查看答案和解析>>

同步練習冊答案