6.若集合A={-1,0,1,2},B={1,2,3},則A∩B=( 。
A.{-1,0,1,2,3}B.{-1,3}C.{1,2}D.{3}

分析 直接由交集的運(yùn)算性質(zhì)計(jì)算得答案.

解答 解:∵集合A={-1,0,1,2},B={1,2,3},
∴A∩B={-1,0,1,2}∩{1,2,3}={1,2}.
故選:C.

點(diǎn)評 本題考查了交集及其運(yùn)算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若${(1+3x)^{2017}}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{2017}}{x^{2017}}$,則$\frac{a_1}{3}-\frac{a_2}{3^2}+\frac{a_3}{3^3}+…+{(-1)^{n-1}}\frac{a_n}{3^n}+…+\frac{{{a_{2017}}}}{{{3^{2017}}}}$的值為( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)$y=2tan(2x-\frac{π}{4})-1$在一個(gè)周期內(nèi)的圖象是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=2an-n,求數(shù)列{an}的通項(xiàng)公式.勤于思考的小紅設(shè)計(jì)了下面兩種解題思路,請你選擇其中一種并將其補(bǔ)充完整.
思路1:先設(shè)n的值為1,根據(jù)已知條件,計(jì)算出a1=1,a2=3,a3=7.
猜想:an=2n-1
然后用數(shù)學(xué)歸納法證明.證明過程如下:
①當(dāng)n=1時(shí),a1=21-1,猜想成立
②假設(shè)n=k(k∈N*)時(shí),猜想成立,即ak=2k-1.
那么,當(dāng)n=k+1時(shí),由已知Sn=2an-n,得Sk+1=2ak+1-(k+1).
又Sk=2ak-k,兩式相減并化簡,得ak+1=2k+1-1(用含k的代數(shù)式表示).
所以,當(dāng)n=k+1時(shí),猜想也成立.
根據(jù)①和②,可知猜想對任何k∈N*都成立.
思路2:先設(shè)n的值為1,根據(jù)已知條件,計(jì)算出a1=1.
由已知Sn=2an-n,寫出Sn+1與an+1的關(guān)系式:Sn+1=2an+1-(n+1),
兩式相減,得an+1與an的遞推關(guān)系式:an+1=2an+1.
整理:an+1+1=2(an+1).
發(fā)現(xiàn):數(shù)列{an+1}是首項(xiàng)為2,公比為2的等比數(shù)列.
得出:數(shù)列{an+1}的通項(xiàng)公式an+1=2n,進(jìn)而得到an=2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=e-x-$\frac{1}{1+x}$.
(Ⅰ)證明:當(dāng)x∈[0,3]時(shí),${e^{-x}}≥\frac{1}{1+9x}$.
(Ⅱ)證明:當(dāng)x∈[2,3]時(shí),$-\frac{2}{7}<f(x)<0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.i是虛數(shù)單位,復(fù)數(shù)$\frac{1+3i}{1-i}$=-1+2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=alnx-x+2,(其中實(shí)數(shù)a≠0).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)如果對任意的x1∈[1,e],總存在x2∈[1,e],使得f(x1)+f(x2)≥3,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=x2-|x|的值域是[$-\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若x>3,則函數(shù)$f(x)=x+\frac{4}{x-3}$取得最小值為( 。
A.4B.5C.6D.7

查看答案和解析>>

同步練習(xí)冊答案