分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函的遞減區(qū)間即可;
(2)問題等價于$a≥lnx-\frac{3x}{2}-\frac{1}{2x}$在x∈(0,+∞)上恒成立,令$h(x)=lnx-\frac{3x}{2}-\frac{1}{2x}$,根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.
解答 解(1)f'(x)=3x2+2ax-a2=(3x-a)(x+a)…(2分)
由f'(x)<0且a<0得:$\frac{a}{3}<x<-a$…(4分)
∴函數(shù)f(x)的單調(diào)減區(qū)間為$(\frac{a}{3},-a)$…(5分)
(2)依題意x∈(0,+∞)時,不等式2xlnx≤f'(x)+a2+1恒成立,
等價于$a≥lnx-\frac{3x}{2}-\frac{1}{2x}$在x∈(0,+∞)上恒成立.…(7分)
令$h(x)=lnx-\frac{3x}{2}-\frac{1}{2x}$
則$h'(x)=\frac{1}{x}-\frac{3}{2}+\frac{1}{{2{x^2}}}=-\frac{(3x+1)(x-1)}{{2{x^2}}}(x>0)$…(9分)
當(dāng)x∈(0,1)時,h'(x)>0,h(x)單調(diào)遞增
當(dāng)x∈(1,+∞)時,h'(x)<0,h(x)單調(diào)遞減
∴當(dāng)x=1時,h(x)取得最大值h(1)=-2
故a≥-2…(12分)
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{3}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16π | B. | 12π | C. | 8π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≤0 | B. | $a≤-\frac{1}{3}$ | C. | a≥0 | D. | $a≥-\frac{1}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com