定義在實數(shù)集R上的偶函數(shù)f(x)的最小值為3,且當x≥0時,f(x)=3ex+a,其中e是自然對數(shù)的底數(shù).
(1)求函數(shù)f(x)的解析式.(2)求最大的整數(shù)m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤3ex.
(1)∵y=ex是增函數(shù),∴當x≥0時,f(x)為增函數(shù),又f(x)為偶函數(shù),∴f(x)min=f(0)=3+a,∴3+a=3.∴a=0
當x<0時,∵-x>0∴f(x)=f(-x)=3e-x
綜上,f(x)=
3ex?x≥0
3e-x?x<0

(2)當x∈[1,m]時,有f(x+t)≤3ex,∴f(1+t)≤3e
當1+t≥0時,3e1+t≤3e即e1+t≤e,1+t≤1,∵-1≤t≤0
當1+t≤0時,同理,-2≤t≤-1,∴-2≤t≤0
同樣地,f(m+t)≤3em及m≥2,得em+t≤em∴et
em
em

由t的存在性可知,上述不等式在[-2,0]上必有解.
∵et在[-2,0]上的最小值為e-2,∵e-2
em
em
,即em-e3m≤0①
令g(x)=ex-e3x,x∈[2,+∞).
則g'(x)=ex-e3由g'(x)=0得x=3
當2≤x<3時,g'(x)<0,g(x)是減函數(shù);當x>3時,g'(x)>0,g(x)是增函數(shù)
∴g(x)的最小值是g(3)=e3-3e3=-2e3<0,
又g(2)<0,g(4)<0,g(5)>0,
∴g(x)=0在[2,+∞)上有唯一解m0∈(4,5).
當2≤x≤m0時,g(x)≤0,當x>m0時,g(x)>0∴在x∈[2,+∞)時滿足不等式①的最大實數(shù)解為m0
當t=-2,x∈[1,m0]時,f(x-2)-3ex=3e(e|x-2|-1-x),在x∈[1,2)時,∵e|x-2|-1=e1-x≤1∴f(x-2)-3ex≤0,在x∈[2,m0]時,f(x-2)-3ex=3e(ex-3-x)=
3
e2
g(x)≤0

綜上所述,m最大整數(shù)為4.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:044

定義在實數(shù)集上的函數(shù)f(x)對任意x,yÎRf(x+y)+f(x-y)=2f(x)f(y)f(0)¹0

1求證:f(0)=1;2求證:y=f(x)是偶涵數(shù);

3)若存在常數(shù)c使;①求證對任意xÎRf(x+c)=-f(x)成立;②試問函數(shù)f(x)是不是周期函數(shù),如果是,找出它的一個周期;如果不是,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:044

定義在實數(shù)集上的函數(shù)f(x)對任意x,yÎRf(x+y)+f(x-y)=2f(x)f(y)f(0)¹0

1求證:f(0)=12求證:y=f(x)是偶涵數(shù);

3)若存在常數(shù)c使;①求證對任意xÎRf(x+c)=-f(x)成立;②試問函數(shù)f(x)是不是周期函數(shù),如果是,找出它的一個周期;如果不是,請說明理由

查看答案和解析>>

同步練習冊答案