設(shè):的準(zhǔn)線與軸交于點(diǎn),焦點(diǎn)為;橢圓以為焦點(diǎn),離心率.設(shè)是的一個(gè)交點(diǎn).
(1)當(dāng)時(shí),求橢圓的方程.
(2)在(1)的條件下,直線過的右焦點(diǎn),與交于兩點(diǎn),且等于的周長,求的方程.
(3)求所有正實(shí)數(shù),使得的邊長是連續(xù)正整數(shù).
(1)的方程為.(2)的方程為或.(3)
解析試題分析:(1)已知焦點(diǎn),即可得橢圓的故半焦距為,又已知離心率為,故可求得半長軸長為2,從而知橢圓的方程為.(2)由(1)可知的周長,即等于6. 設(shè)的方程為代入,然后利用弦長公式得一含的方程,解這個(gè)方程即得的值,從而求得直線的方程.(3)由得.根據(jù)題設(shè),將的三邊用表示出來,再根據(jù)的邊長是連續(xù)正整數(shù),即可求得的值.
試題解析:(1)由條件,是橢圓的兩焦點(diǎn),故半焦距為,再由離心率為知半長軸長為2,從而的方程為,其右準(zhǔn)線方程為.
(2)由(1)可知的周長.又:而.
若垂直于軸,易得,矛盾,故不垂直于軸,可設(shè)其方程為,與方程聯(lián)立可得,從而
,
令可解出,故的方程為或.
(3)由得.設(shè),由于點(diǎn)P在橢圓上,所以;由點(diǎn)P在拋物線上知,,所以,,所以,.又.由此可得,若的邊長是連續(xù)正整數(shù),則,解之得,其對應(yīng)的三邊為5,6,7.
考點(diǎn):1、橢圓與拋物線的方程;2、直線與圓錐曲線的關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:()過點(diǎn),且橢圓的離心率為.
(1)求橢圓的方程;
(2)若動點(diǎn)在直線上,過作直線交橢圓于兩點(diǎn),且為線段中點(diǎn),再過作直線.求直線是否恒過定點(diǎn),如果是則求出該定點(diǎn)的坐標(biāo),不是請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的長軸長為,離心率為,分別為其左右焦點(diǎn).一動圓過點(diǎn),且與直線相切.
(1)(ⅰ)求橢圓的方程;(ⅱ)求動圓圓心軌跡的方程;
(2)在曲線上有四個(gè)不同的點(diǎn),滿足與共線,與共線,且,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓的左、右焦點(diǎn)分別為,其上頂點(diǎn)為已知是邊長為的正三角形.
(1)求橢圓的方程;
(2)過點(diǎn)任作一動直線交橢圓于兩點(diǎn),記.若在線段上取一點(diǎn),使得,當(dāng)直線運(yùn)動時(shí),點(diǎn)在某一定直線上運(yùn)動,求出該定直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:(a>b>0),過點(diǎn)(0,1),且離心率為.
(1)求橢圓C的方程;
(2)A,B為橢圓C的左右頂點(diǎn),直線l:x=2與x軸交于點(diǎn)D,點(diǎn)P是橢圓C上異于A,B的動點(diǎn),直線AP,BP分別交直線l于E,F(xiàn)兩點(diǎn).證明:當(dāng)點(diǎn)P在橢圓C上運(yùn)動時(shí),恒為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知平面內(nèi)一動點(diǎn)到兩個(gè)定點(diǎn)、的距離之和為,線段的長為.
(1)求動點(diǎn)的軌跡;
(2)當(dāng)時(shí),過點(diǎn)作直線與軌跡交于、兩點(diǎn),且點(diǎn)在線段的上方,線段的垂直平分線為
①求的面積的最大值;
②軌跡上是否存在除、外的兩點(diǎn)、關(guān)于直線對稱,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線,直線,是拋物線的焦點(diǎn)。
(1)在拋物線上求一點(diǎn),使點(diǎn)到直線的距離最;
(2)如圖,過點(diǎn)作直線交拋物線于A、B兩點(diǎn).
①若直線AB的傾斜角為,求弦AB的長度;
②若直線AO、BO分別交直線于兩點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的左、右焦點(diǎn)分別、,點(diǎn)是橢圓短軸的一個(gè)端點(diǎn),且焦距為6,的周長為16.
(I)求橢圓的方程;
(2)求過點(diǎn)且斜率為的直線被橢圓所截的線段的中點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,動點(diǎn)與兩定點(diǎn)、構(gòu)成,且,設(shè)動點(diǎn)的軌跡為.
(1)求軌跡的方程;
(2)設(shè)直線與軸相交于點(diǎn),與軌跡相交于點(diǎn),且,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com