設函數(shù)f(x)=ex-
k
2
x2-x

(1)若k=0,求f(x)的最小值;
(2)若當x≥0時f(x)≥1,求實數(shù)k的取值范圍.
(1)k=0時,f(x)=ex-x,
f'(x)=ex-1.
當x∈(-∞,0)時,f'(x)<0;當x∈(0,+∞)時,f'(x)>0.
所以f(x)在(-∞,0)上單調減小,在(0,+∞)上單調增加
故f(x)的最小值為f(0)=1
(2)f'(x)=ex-kx-1,
f''(x)=ex-k
當k≤1時,f''(x)≥0(x≥0),
所以f'(x)在[0,+∞)上遞增,
而f'(0)=0,
所以f'(x)≥0(x≥0),
所以f(x)在[0,+∞)上遞增,
而f(0)=1,
于是當x≥0時,f(x)≥1.
當k>1時,
由f''(x)=0得x=lnk
當x∈(0,lnk)時,f''(x)<0,所以f'(x)在(0,lnk)上遞減,
而f'(0)=0,于是當x∈(0,lnk)時,f'(x)<0,所以f(x)在(0,lnk)上遞減,
而f(0)=1,所以當x∈(0,lnk)時,f(x)<1.
綜上得k的取值范圍為(-∞,1].
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ex-
k2
x2-x

(1)若k=0,求f(x)的最小值;
(2)若當x≥0時f(x)≥1,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•四川)設函數(shù)f(x)=
ex+x-a
(a∈R,e為自然對數(shù)的底數(shù)).若存在b∈[0,1]使f(f(b))=b成立,則a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
ex   (x≤0)
lnx (x>0)
,則f[f(
π
4
)]
=
π
4
π
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
ex      (x<0)
a+x  (x≥0)
為R上的連續(xù)函數(shù),則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•四川)設函數(shù)f(x)=
ex+x-a
(a∈R,e為自然對數(shù)的底數(shù)),若曲線y=sinx上存在點(x0,y0)使得f(f(y0))=y0,則a的取值范圍是( 。

查看答案和解析>>

同步練習冊答案