已知{an}是首項(xiàng)為1,公差為1的等差數(shù)列;若數(shù)列{bn}滿足b1=1,bn+1=bn+2an.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求證:bn•bn+2<bn+12.
分析:(1)由題設(shè)條件知bn+1-bn=2n.由此能夠求出數(shù)列{bn}的通項(xiàng)公式.
(2)做差比較,由bn•bn+2-bn+12=(2n-1)•(2n+2-1)-(2n+1-1)2=(22n+2-2n+2-2n+1)-(22n+2-2n+2+1)=-2n,與0比較可得答案.
解答:解:(1)由已知得a
n=n.從而b
n+1=b
n+2
n,即b
n+1-b
n=2
n.(2分)
∴b
n=(b
n-b
n-1)+(b
n-1-b
n-2)+…+(b
2-b
1)+b
1=
2n-1+2n-2++2+1==2n-1.(6分)
(2)因?yàn)閎
n•b
n+2-b
n+12=(2
n-1)•(2
n+2-1)-(2
n+1-1)
2=(2
2n+2-2
n+2-2
n+1)-(2
2n+2-2
n+2+1)=-2
n<0,
∴b
n•b
n+2<b
n+12.(12分)
點(diǎn)評:本題考查數(shù)列的性質(zhì)和不等式的解法,解題時(shí)要注意公式的靈活運(yùn)用.