(本小題滿分12分)美國(guó)華爾街的次貸危機(jī)引起的金融風(fēng)暴席卷全球,低迷的市場(chǎng)造成產(chǎn)品銷售越來(lái)越難,為此某廠家舉行大型的促銷活動(dòng),經(jīng)測(cè)算該產(chǎn)品的銷售量P萬(wàn)件(生產(chǎn)量與銷售量相等)與促銷費(fèi)用萬(wàn)元滿足,已知生產(chǎn)該產(chǎn)品還需投入成本萬(wàn)元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為元/萬(wàn)件.
(Ⅰ)將該產(chǎn)品的利潤(rùn)萬(wàn)元表示為促銷費(fèi)用萬(wàn)元的函數(shù);
(Ⅱ)促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大。

(I),();
(II)促銷費(fèi)用投入1萬(wàn)元時(shí),廠家的利潤(rùn)最大 。

解析試題分析:(1)根據(jù)產(chǎn)品的利潤(rùn)=銷售額-產(chǎn)品的成本建立函數(shù)關(guān)系;
(2)利用基本不等式可求出該函數(shù)的最值,注意等號(hào)成立的條件.
(I)由題意知,該產(chǎn)品售價(jià)為元,  代入化簡(jiǎn)的  ,()………………6分
(II)
當(dāng)且僅當(dāng)時(shí),上式取等號(hào) 所以促銷費(fèi)用投入1萬(wàn)元時(shí),廠家的利潤(rùn)最大                                    ……………12分
考點(diǎn):本試題主要考查了函數(shù)模型的選擇與應(yīng)用,以及基本不等式在最值問(wèn)題中的應(yīng)用,同時(shí)考查了計(jì)算能力,屬于中檔題.
點(diǎn)評(píng):解決該試題的關(guān)鍵是利用已知中產(chǎn)品的售價(jià)以及銷售量來(lái)表示收入,再減去成本得到利潤(rùn)函數(shù)。并能靈活運(yùn)用均值不等式得到最值。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題12分)
提高過(guò)立交橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,成都某立交橋上的車流速度(單位:千米/小時(shí))是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過(guò)20輛/千米時(shí),車流速度為60千米/小時(shí).研究表明:當(dāng)時(shí),車流速度是車流密度的一次函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)
(1)若試判斷函數(shù)零點(diǎn)個(gè)數(shù);
(2)若對(duì)任意的,且,>0),試證明:
成立。
(3)是否存在,使同時(shí)滿足以下條件:①對(duì)任意,,且②對(duì)任意的,都有?若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分13分)某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品(百臺(tái)),其總成本為(萬(wàn)元),其中固定成本為2.8萬(wàn)元,并且每生產(chǎn)1百臺(tái)的生產(chǎn)成本為2萬(wàn)元(總成本=固定成本+生產(chǎn)成本).銷售收入(萬(wàn)元)滿足,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請(qǐng)完成下列問(wèn)題:
(1)寫出函數(shù)的解析式;
(2)寫出利潤(rùn)函數(shù)的解析式(利潤(rùn)=銷售收入—總成本);
(3)工廠生產(chǎn)多少臺(tái)產(chǎn)品時(shí),可使盈利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題10分)求下列各式的值.
(1);
(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)已知函數(shù)f(x)=-x2+2ax+1-a在x∈[0,1]時(shí)有最大值2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(理科題)(本小題12分)
某房產(chǎn)開(kāi)發(fā)商投資81萬(wàn)元建一座寫字樓,第一年裝修費(fèi)為1萬(wàn)元,以后每年增加2萬(wàn)元,把寫字樓出租,每年收入租金30萬(wàn)元。
(1)若扣除投資和各種裝修費(fèi),則從第幾年開(kāi)始獲取純利潤(rùn)?
(2)若干年后開(kāi)發(fā)商為了投資其他項(xiàng)目,有兩種處理方案①年平均利潤(rùn)最大時(shí)以46萬(wàn)元出售該樓;
②純利潤(rùn)總和最大時(shí),以10萬(wàn)元出售樓,問(wèn)選擇哪種方案盈利更多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分) 已知函數(shù))的圖象過(guò)點(diǎn),點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的圖象上.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)令,求的最小值及取得最小值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

首屆世界低碳經(jīng)濟(jì)大會(huì)在南昌召開(kāi),本屆大會(huì)以“節(jié)能減排,綠色生態(tài)”為主題.某單位在國(guó)家科研部門的支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可近似的表示為:,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為100元.
(Ⅰ)該單位每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?
(Ⅱ)該單位每月能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則國(guó)家至少需要補(bǔ)貼多少元才能使該單位不虧損?

查看答案和解析>>

同步練習(xí)冊(cè)答案