已知e為自然對數(shù)的底數(shù),設(shè)函數(shù)f(x)=(ex-1)(x-1)k(k=1,2),則( )
A.當(dāng)k=1時,f(x)在x=1處取得極小值
B.當(dāng)k=1時,f(x)在x=1處取得極大值
C.當(dāng)k=2時,f(x)在x=1處取得極小值
D.當(dāng)k=2時,f(x)在x=1處取得極大值
【答案】分析:通過對函數(shù)f(x)求導(dǎo),根據(jù)選項(xiàng)知函數(shù)在x=1處有極值,驗(yàn)證f'(1)=0,再驗(yàn)證f(x)在x=1處取得極小值還是極大值即可得結(jié)論.
解答:解:當(dāng)k=2時,函數(shù)f(x)=(ex-1)(x-1)2
求導(dǎo)函數(shù)可得f'(x)=ex(x-1)2+2(ex-1)(x-1)=(x-1)(xex+ex-2),
∴當(dāng)x=1,f'(x)=0,且當(dāng)x>1時,f'(x)>0,當(dāng)<x<1時,f'(x)<0,故函數(shù)f(x)在(1,+∞)上是增函數(shù);
在(,1)上是減函數(shù),從而函數(shù)f(x)在x=1取得極小值.對照選項(xiàng).
故選C.
點(diǎn)評:本題考查了函數(shù)的極值問題,考查學(xué)生的計算能力,正確理解極值是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(2-a)(x-1)-2lnx,g(x)=xe1-x(a∈R,e為自然對數(shù)的底)
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(II)若對任意給定的x0∈(0,e],在區(qū)間(0,e]上總存在兩個不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(ax2+bx+c)•ex,其中e為自然對數(shù)的底,a,b,c為常數(shù),若函數(shù)f(x)在x=-2處取得極值,且
lim
x→0
f(x)-c
x
=-4

(I)求實(shí)數(shù)b、c的值;
(Ⅱ)若函數(shù)f(x)在區(qū)間[1,2]上是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2elnx.(e為自然對數(shù)的底)
(Ⅰ)求f(x)的最小值;
(Ⅱ)是否存在常數(shù)a,b使得x2≥ax+b≥2elnx對于任意的正數(shù)x恒成立?若存在,求出a,b的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
lnaxx
(a>0,a∈R)
,e為自然對數(shù)的底,
(1)求f(x)的最值;
(2)若關(guān)于x方程ln2x=x3-ex2+mx有兩個不同解,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx(x>0).
(1)求過原點(diǎn)O且與函數(shù)f(x)=lnx圖象相切的切線l方程,并證明函數(shù)f(x)=lnx圖象不在直線l的上方;
(2)若在區(qū)間[1,2]內(nèi)至少存在一個實(shí)數(shù)x,使得x4-ax3+10x<e(x3-ax2+10)lnx成立,求實(shí)數(shù)a的取值范圍(e為自然對數(shù)的底)

查看答案和解析>>

同步練習(xí)冊答案