如果數(shù)列{an}的前n項(xiàng)和Sn=
1
5n
(7n-5n),那么這個(gè)數(shù)列( 。
A、是等差數(shù)列但不是等比數(shù)列
B、是等比數(shù)列但不是等差數(shù)列
C、既是等差數(shù)列又是等比數(shù)列
D、既不是等差數(shù)列又不是等比數(shù)列
考點(diǎn):等比關(guān)系的確定
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)條件,利用an=Sn-Sn-1,n≥2,求出數(shù)列的通項(xiàng)公式,然后根據(jù)通項(xiàng)公式進(jìn)行判斷即可.
解答: 解:Sn=
1
5n
(7n-5n)=(
7
5
)n-1
,
當(dāng)n≥2時(shí),an=Sn-Sn-1=(
7
5
)
n
-1-(
7
5
)
n-1
+1
=
2
5
(
7
5
)
n-1
,
當(dāng)n=1時(shí),a1=S1=
2
5
,滿足an,
∴數(shù)列{an}的通項(xiàng)公式為an=
2
5
(
7
5
)
n-1
,n≥1為公比為
7
5
的等比數(shù)列,不是等差數(shù)列.
故選:B.
點(diǎn)評(píng):本題主要考查數(shù)列通項(xiàng)公式的計(jì)算,利用an=Sn-Sn-1,n≥2是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a,b,c成遞減的等差數(shù)列,若∠A=2∠C,則
a
c
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(2,0)及圓C:x2+y2-6x+4y+4=0,設(shè)過(guò)點(diǎn)P的直線與圓C交于A、B兩點(diǎn),當(dāng)|AB|=4,求以線段AB為直徑的圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(x)在定義域內(nèi)可導(dǎo),若f(x)關(guān)于點(diǎn)(1,0)對(duì)稱,且當(dāng)x<(-∞,1)時(shí),f′(x)<0,設(shè)a=f(0),b=f(
1
2
),c=f(3),將a,b,c按從小到大用“<”連接起來(lái),結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若變量x,y滿足約束條件
x-y+1≤0
x+2y-8≤0
x≥0
,求z=3x+y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)算法如下:
第一步:S取值0,i取值1;
第二步:若i不大于10,則執(zhí)行下一步;否則執(zhí)行第六步;
第三步:計(jì)算S+i且將結(jié)果代替i;
第四步:用i+2結(jié)果代替i;
第五步:轉(zhuǎn)去執(zhí)行第二步;
第六步:輸出S則運(yùn)行以上步驟輸出的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

斜率不存在的直線一定是( 。
A、平行于x軸的直線
B、垂直于x軸的直線
C、垂直于y軸的直線
D、垂直于坐標(biāo)軸的直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)若三點(diǎn)A(2,3),B(3,-2),C(
1
2
,m)共線,求m的值;
(2)求斜率為
3
4
,且與坐標(biāo)軸所圍成的三角形的面積是6的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-2lnx,求函數(shù)f(x)的極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案