(1)計算及的值。
(2)歸納出(n∈N)的值,再用數(shù)學(xué)歸納法加以證明。
當(dāng)n=1時,顯然f(1)=2,當(dāng)n=2時,f(2)=2+2=4,
當(dāng)n=3時,f(3)=4+3=7,當(dāng)n=4時,f(4)=f(3)+4,由此猜想:f(n)=f(n-1)+n, 把n取2,3,4……,n所得的n-1個式子累加, 得f(n)=2+2+3+4+…+n=1+,即。 (1)當(dāng)n=1時,f(1)=,結(jié)論顯然成立。 (2)假設(shè)n=k時,結(jié)論成立,即平面內(nèi)滿足條件的k條直線把平面分成的區(qū)域個數(shù)為f(k)=,則當(dāng)n=k+1時,第k+1條直線與前k條直線有k個交點,這k個交點將第k+1條直線分成k+1段,而每一段又將它所在區(qū)域一分為二,這樣f(k+1)比f(k)多k+1。 ∴, ∴當(dāng)n=k+1時,結(jié)論成立。 由(1)、(2)知,對任意n∈N結(jié)論都成立。
|
科目:高中數(shù)學(xué) 來源: 題型:
2 |
3 |
1 |
3 |
2 |
3 |
4 |
3 |
2 |
9 |
1 |
3 |
1 |
9 |
2 |
9 |
13 |
9 |
2 |
Sn |
Tn |
Sn |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆四川省高一下學(xué)期3月月考數(shù)學(xué)試卷 題型:解答題
已知向量,,其中,。
(1)試計算及的值。
(2)求向量與的夾角的正弦值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com