【題目】如圖,已知直三棱柱中,,,是的中點(diǎn),是上一點(diǎn),且.
(1)證明:平面;
(2)求二面角余弦值的大小.
【答案】(1)證明見解析;(2).
【解析】
(1)證明出,可得出,即有,再證明出平面,可得出,然后利用直線與平面垂直的判定定理可證明出平面;
(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,然后利用空間向量法計(jì)算出二面角余弦值的大小.
(1)由題意知,等腰直角三角形中,中線,且,
在直三棱柱中,底面,
、平面,從而知,,
一方面,在中,因?yàn)?/span>,,則.
由,可得,從而可知,又,
則得,由此可得,即有.
另一方面,由,,,得平面,
又平面,則知.
綜上,,且,又,故平面,得證之;
(2)由題意,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,
且有、、、、,
從而有、、,
由,可得,
記為平面的一個(gè)法向量,
則有,取,得.
又由(1)知平面,故可取為平面的一個(gè)法向量,那么可得.
因此,二面角余弦值的大小為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場營銷人員進(jìn)行某商品M市場營銷調(diào)查發(fā)現(xiàn),每回饋消費(fèi)者一定的點(diǎn)數(shù),該商品每天的銷量就會(huì)發(fā)生一定的變化,經(jīng)過試點(diǎn)統(tǒng)計(jì)得到以如表:
反饋點(diǎn)數(shù)t | 1 | 2 | 3 | 4 | 5 |
銷量百件天 | 1 |
經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合當(dāng)?shù)卦撋唐蜂N量千件與返還點(diǎn)數(shù)t之間的相關(guān)關(guān)系請用最小二乘法求y關(guān)于t的線性回歸方程,并預(yù)測若返回6個(gè)點(diǎn)時(shí)該商品每天銷量;
若節(jié)日期間營銷部對(duì)商品進(jìn)行新一輪調(diào)整已知某地?cái)M購買該商品的消費(fèi)群體十分龐大,經(jīng)營銷調(diào)研機(jī)構(gòu)對(duì)其中的200名消費(fèi)者的返點(diǎn)數(shù)額的心理預(yù)期值進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:
返還點(diǎn)數(shù)預(yù)期值區(qū)間 百分比 | ||||||
頻數(shù) | 20 | 60 | 60 | 30 | 20 | 10 |
求這200位擬購買該商品的消費(fèi)者對(duì)返點(diǎn)點(diǎn)數(shù)的心理預(yù)期值X的樣本平均數(shù)及中位數(shù)的估計(jì)值同一區(qū)間的預(yù)期值可用該區(qū)間的中點(diǎn)值代替;估計(jì)值精確到;
將對(duì)返點(diǎn)點(diǎn)數(shù)的心理預(yù)期值在和的消費(fèi)者分別定義為“欲望緊縮型”消費(fèi)者和“欲望膨脹型”消費(fèi)者,現(xiàn)采用分層抽樣的方法從位于這兩個(gè)區(qū)間的30名消費(fèi)者中隨機(jī)抽取6名,再從這6人中隨機(jī)抽取3名進(jìn)行跟蹤調(diào)查,設(shè)抽出的3人中“欲望膨脹型”消費(fèi)者的人數(shù)為隨機(jī)變量X,求X的分布列及數(shù)學(xué)期望.
參考公式及數(shù)據(jù):,;.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x∈R,2mx2+mx-<0,命題q:2m+1>1.若“p∧q”為假,“p∨q”為真,則實(shí)數(shù)m的取值范圍是( 。
A. (-3,-1)∪[0,+∞) B. (-3,-1]∪[0,+∞)
C. (-3,-1)∪(0,+∞) D. (-3,-1]∪(0,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)不等式組所表示的平面區(qū)域?yàn)?/span>,其面積為.①若,則的值唯一;②若,則的值有2個(gè);③若為三角形,則;④若為五邊形,則.以上命題中,真命題的個(gè)數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,ABCD-A1B1C1D1是長方體,O是B1D1的中點(diǎn),直線A1C交平面AB1D1于點(diǎn)M,則下列結(jié)論正確是( )
A.A,M,O三點(diǎn)共線B.A,M,O,A1不共面
C.A,M,C,O不共面D.B,B1,O,M共面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在等腰梯形中,分別為的中點(diǎn) 為中點(diǎn),現(xiàn)將四邊形沿折起,使平面平面,得到如圖②所示的多面體,在圖②中.
(1)證明:;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)絡(luò)平臺(tái)從購買該平臺(tái)某課程的客戶中,隨機(jī)抽取了100位客戶的數(shù)據(jù),并將這100個(gè)數(shù)據(jù)按學(xué)時(shí)數(shù),客戶性別等進(jìn)行統(tǒng)計(jì),整理得到如表:
學(xué)時(shí)數(shù) |
| ||||||
男性 | 18 | 12 | 9 | 9 | 6 | 4 | 2 |
女性 | 2 | 4 | 8 | 2 | 7 | 13 | 4 |
(1)根據(jù)上表估計(jì)男性客戶購買該課程學(xué)時(shí)數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,結(jié)果保留小數(shù)點(diǎn)后兩位);
(2)從這100位客戶中,對(duì)購買該課程學(xué)時(shí)數(shù)在20以下的女性客戶按照分層抽樣的方式隨機(jī)抽取7人,再從這7人中隨機(jī)抽取2人,求這2人購買的學(xué)時(shí)數(shù)都不低于15的概率.
(3)將購買該課程達(dá)到25學(xué)時(shí)及以上者視為“十分愛好該課程者”,25學(xué)時(shí)以下者視,為“非十分愛好該課程者”.請根據(jù)已知條件完成以下列聯(lián)表,并判斷是否有99.9%的把握認(rèn)為“十分愛好該課程者”與性別有關(guān)?
非十分愛好該課程者 | 十分愛好該課程者 | 合計(jì) | |
男性 | |||
女性 | |||
合計(jì) | 100 |
附:,
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,錯(cuò)誤的是( )
A.一條直線和直線外一點(diǎn)確定一個(gè)平面
B.平行于同一平面的兩個(gè)不同平面平行
C.若直線不平行平面,則在平面內(nèi)不存在與平行的直線
D.如果平面不垂直平面,那么平面內(nèi)一定不存在直線垂直于平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率是,上頂點(diǎn)B是拋物線的焦點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的兩個(gè)動(dòng)點(diǎn),且(是坐標(biāo)原點(diǎn)),試問:點(diǎn)到直線的距離是否為定值?若是,試求出這個(gè)定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com