設(shè)集合,集合B為函數(shù)的定義域,則

A.            B.            C.[1,2)             D.(1,2]

 

【答案】

D

【解析】

試題分析:根據(jù)題意,對于集合,利用指數(shù)函數(shù)的單調(diào)性得到。對于集合B,因為對數(shù)真數(shù)大于零,因此可知x-1>0,則可知集合,故選D.

考點(diǎn):本試題考查了函數(shù)的定義域和集合運(yùn)算。

點(diǎn)評:解決該試題的關(guān)鍵是對于集合B的準(zhǔn)確表示,以及指數(shù)不等式的求解,對于指數(shù)不等式和對數(shù)不等式的求解主要利用函數(shù)的單調(diào)性來求解不等式,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

27、對于函數(shù)f(x),若f(x0)=x0,則稱x0為f(x)的“不動點(diǎn)”;若f[f(x0)]=x0,則稱x0為f(x)的“穩(wěn)定點(diǎn)”.函數(shù)f(x)的“不動點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為A和B,即A={x|f(x)=x},B={x|f[f(x)]=x}.
(1)設(shè)函數(shù)f(x)=3x+4求集合A和B;
(2)求證:A⊆B;
(3)設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),且A=∅,求證:B=∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(t)=at2-
b
t+
1
4a
(t∈R,a<0)的最大值為正實(shí)數(shù),集合A={x|
x-a
x
<0},集合B={x|x2<b2}.
(1)求A和B;
(2)定義A與B的差集:A-B={x|x∈A且x∉B}.設(shè)a,b,x均為整數(shù),且x∈A.P(E)為x取自A-B的概率,P(F)為x取自A∩B的概率,寫出a與b的二組值,使P(E)=
2
3
,P(F)=
1
3

(3)若函數(shù)f(t)中,a,b是(2)中a較大的一組,試寫出f(t)在區(qū)間[n-
2
8
,n]上的最大值函數(shù)g(n)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(安徽卷解析版) 題型:選擇題

設(shè)集合,集合B為函數(shù)的定義域,則(   )

(A)  (1,2)    (B)[1,   2]      (C) [ 1,2 )   (D)(1,2 ]

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(t)=at2-
b
t+
1
4a
(t∈R,a<0)的最大值為正實(shí)數(shù),集合A={x|
x-a
x
<0},集合B={x|x2<b2}.
(1)求A和B;
(2)定義A與B的差集:A-B={x|x∈A且x∉B}.設(shè)a,b,x均為整數(shù),且x∈A.P(E)為x取自A-B的概率,P(F)為x取自A∩B的概率,寫出a與b的二組值,使P(E)=
2
3
,P(F)=
1
3

(3)若函數(shù)f(t)中,a,b是(2)中a較大的一組,試寫出f(t)在區(qū)間[n-
2
8
,n]上的最大值函數(shù)g(n)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案