分析 求導函數(shù),分別求出函數(shù)f(x)的最大值,g(x)的最小值,進而可建立不等關系,即可求出a的取值范圍.
解答 解:求導函數(shù),可得g′(x)=$\frac{1}{x}$-2=$\frac{1-2x}{x}$,x∈[$\frac{1}{2}$,2],g′(x)<0,
∴g(x)min=g(2)=ln2-4,
∵f(x)=2x+a,
∴f(x)在[$\frac{1}{2}$,2]上單調(diào)遞增,
∴f(x)max=f($\frac{1}{2}$)=4+a,
∵對任意的${x_1},{x_2}∈[{\frac{1}{2},2}]$,都有f(x1)≤g(x2)成立,
∴4+a≤ln2-4,
∴a≤ln2-8,
故答案為:(-∞,ln2-8].
點評 本題考查導數(shù)知識的運用,考查函數(shù)的最值,解題的關鍵是轉(zhuǎn)化為f(x)max≤g(x)min.
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(1)<ef(0),f(2)<e2f(0) | B. | f(1)>ef(0),f(2)<e2f(0) | C. | f(1)<ef(0),f(2)>e2f(0) | D. | f(1)>ef(0),f(2)>e2f(0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<f'(1)<f'(2) | B. | f'(1)<a<f'(2) | C. | f'(2)<f'(1)<a | D. | f'(1)<f'(2)<a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,2] | B. | [2,+∞) | C. | (0,5) | D. | (2,5] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0) | B. | (-∞,2) | C. | (0,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com