若圓C與y軸和直線3x+4y-2=0都相切,且圓心在第二象限,圓半徑為2,則圓C的標(biāo)準(zhǔn)方程為( )
A.
B.
C.
D.
【答案】分析:設(shè)圓心坐標(biāo)為C(a,b),由圓C與y軸和直線3x+4y-2=0都相切,且圓心在第二象限,圓半徑為2,知,由此能求出圓C的標(biāo)準(zhǔn)方程.
解答:解:設(shè)圓心坐標(biāo)為C(a,b),
∵圓C與y軸和直線3x+4y-2=0都相切,且圓心在第二象限,圓半徑為2,

解得a=-2,b=,
∴圓心為(-2,),
故圓C的標(biāo)準(zhǔn)方程是,
故選D.
點評:本題考查直線與圓的位置關(guān)系,是中檔題.解題時要認真審題,仔細解答,注意點到直線的距離公式和圓的基本性質(zhì)的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濰坊一模)如圖,已知圓C與y軸相切于點T(0,2),與x軸正半軸相交于兩點M,N(點M必在點N的右側(cè)),且|MN|=3,已知橢圓D:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距等于2|ON|,且過點(
2
,
6
2
)

( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過點M斜率不為零的直線l與橢圓D交于A、B兩點,求證:直線NA與直線NB的傾角互補.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濰坊一模)如圖,已知圓C與y軸相切于點T(0,2),與x軸正半軸相交于兩點M,N(點M必在點N的右側(cè)),且|MN|=3橢圓D:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距等于2|ON|,且過點(
2
6
2
)

(I) 求圓C和橢圓D的方程;
(Ⅱ) 設(shè)橢圓D與x軸負半軸的交點為P,若過點M的動直線l與橢圓D交于A、B兩點,∠ANM=∠BNP是否恒成立?給出你的判斷并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練24練習(xí)卷(解析版) 題型:解答題

如圖所示,已知圓Cy軸相切于點T(0,2),x軸正半軸相交于兩點M,N(M在點N的右側(cè)),|MN|=3,已知橢圓D:+=1(a>b>0)的焦距等于2|ON|,且過點,.

(1)求圓C和橢圓D的方程;

(2)若過點M斜率不為零的直線l與橢圓D交于A、B兩點,求證:直線NA與直線NB的傾斜角互補.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知圓C與y軸相切于點T(0,2),與x軸正半軸相交于兩點M,N(點M必在點N的右側(cè)),且|MN|=3,已知橢圓D:數(shù)學(xué)公式的焦距等于2|ON|,且過點數(shù)學(xué)公式
( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過點M斜率不為零的直線l與橢圓D交于A、B兩點,求證:直線NA與直線NB的傾角互補.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年山東省濰坊市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

如圖,已知圓C與y軸相切于點T(0,2),與x軸正半軸相交于兩點M,N(點M必在點N的右側(cè)),且|MN|=3,已知橢圓D:的焦距等于2|ON|,且過點
( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過點M斜率不為零的直線l與橢圓D交于A、B兩點,求證:直線NA與直線NB的傾角互補.

查看答案和解析>>

同步練習(xí)冊答案