【題目】對于定義域為的函數(shù),如果存在區(qū)間(),同時滿足:
①在內(nèi)是單調(diào)函數(shù);②當定義域是時, 的值域也是.
則稱函數(shù)是區(qū)間上的“保值函數(shù)”.
(1)求證:函數(shù)不是定義域上的“保值函數(shù)”;
(2)已知()是區(qū)間上的“保值函數(shù)”,求的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=(x3﹣1)2+1,下列結論中正確的是( )
A.x=1是函數(shù)f(x)的極小值點,x=0是函數(shù)f(x)的極大值點
B.x=1及x=0均是函數(shù)f(x)的極大值點
C.x=1是函數(shù)f(x)的極大值點,x=0是函數(shù)f(x)的極小值點
D.x=1是函數(shù)f(x)的極小值點,函數(shù)f(x)無極大值點
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)fn(x)=xn+bx+c(n∈N* , b,c∈R)
(Ⅰ)設n≥2,b=1,c=﹣1,證明:fn(x)在區(qū)間( )內(nèi)存在唯一的零點;
(Ⅱ)設n=2,若對任意x1 , x2∈[﹣1,1],均有|f2(x1)﹣f2(x2)丨≤4,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:方程 =1所表示的圖形是焦點在y軸上的雙曲線,命題q:復數(shù)z=(m﹣3)+(m﹣1)i對應的點在第二象限,又p或q為真,p且q為假,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列結論中正確的序號是 .
①函數(shù)y=ax(a>0且a≠1)與函數(shù) (a>0且a≠1)的定義域相同;
②函數(shù)y=k3x(k>0)(k為常數(shù))的圖象可由函數(shù)y=3x的圖象經(jīng)過平移得到;
③函數(shù) (x≠0)是奇函數(shù)且函數(shù) (x≠0)是偶函數(shù);
④若x1是函數(shù)f(x)的零點,且m<x1<n,則f(m)f(n)<0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】春節(jié)期間,“厲行節(jié)約,反對浪費”之風悄然吹開,某市通過隨機詢問100名性別不同的居民是否能做到“光盤”行動,得到如下的列聯(lián)表:
做不到“光盤” | 能做到“光盤” | |
男 | 45 | 10 |
女 | 30 | 15 |
P(K2≥k) | 0.10 | 0.05 | 0.025 |
k | 2.706 | 3.841 | 5.024 |
附:
參照附表,得到的正確結論是( )
A.在犯錯誤的概率不超過l%的前提下,認為“該市居民能否做到‘光盤’與性別有關”
B.在犯錯誤的概率不超過l%的前提下,認為“該市居民能否做到‘光盤’與性別無關”
C.有90%以上的把握認為“該市居民能否做到‘光盤’與性別有關”
D.有90%以上的把握認為“該市居民能否做到‘光盤’與性別無關”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,焦點在x軸上的橢圓C: 經(jīng)過點(b,2e),其中e為橢圓C的離心率.過點T(1,0)作斜率為k(k>0)的直線l交橢圓C于A,B兩點(A在x軸下方).
(1)求橢圓C的標準方程;
(2)過點O且平行于l的直線交橢圓C于點M,N,求 的值;
(3)記直線l與y軸的交點為P.若,求直線l的斜率k.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知復數(shù)z=k﹣2i(k∈R)的共軛復數(shù) ,且z﹣( ﹣i)= ﹣2i.
(1)求k的值;
(2)若過點(0,﹣2)的直線l的斜率為k,求直線l與曲線y= 以及y軸所圍成的圖形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com