一個(gè)袋中有大小相同的標(biāo)有1、2、3、4、5、6的6個(gè)小球,某人做如下游戲,每次從袋中拿一個(gè)球(拿后放回),記下標(biāo)號(hào).若拿出球的標(biāo)號(hào)是3的倍數(shù),則得1分,否則得-1分,則拿4次所得分?jǐn)?shù)ξ的數(shù)學(xué)期望是   
【答案】分析:由題意可得:ξ可能取的值為-4,-2,0,2,4,分別求出P(ξ=-4),P(ξ=-2),P(ξ=0),P(ξ=2),P(ξ=4),由此能求出Eξ.
解答:解:由題意可得:ξ可能取的值為-4,-2,0,2,4,
P(ξ=-4)=()4=
P(ξ=-2)==;
P(ξ=0)==;
P(ξ=2)=;
P(ξ=4)=;         (9分)
∴離散型隨機(jī)變量ξ的分布列為:
ξ-4-224
p
所以Eξ=-4×+(-2)×+0×+2×+4×=-
故答案為:-
點(diǎn)評(píng):本題考查離散型隨機(jī)變量的數(shù)學(xué)期望,是中檔題.在歷年高考中都是必考題型.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意概率和排列組合知識(shí)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)袋中有大小相同的標(biāo)有1,2,3,4,5,6的6個(gè)小球,某人做如下游戲,每次從袋中拿一個(gè)球(拿后放回),記下標(biāo)號(hào).若拿出球的標(biāo)號(hào)是3的倍數(shù),則得1分,否則得-1分.
(1)求拿4次至少得2分的概率;
(2)求拿4次所得分?jǐn)?shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)袋中有大小相同的標(biāo)有1,2,3,4,5,6的6個(gè)小球,某人做如下游戲,每次從袋中拿一個(gè)球(拿后放回),記下標(biāo)號(hào).若拿出球的標(biāo)號(hào)是3的倍數(shù),則得1分,否則得-1分.
(Ⅰ)求拿4次至少得2分的概率;
(Ⅱ)求拿4次所得分?jǐn)?shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)袋中有大小相同的標(biāo)有1、2、3、4、5、6的6個(gè)小球,某人做如下游戲,每次從袋中拿一個(gè)球(拿后放回),記下標(biāo)號(hào).若拿出球的標(biāo)號(hào)是3的倍數(shù),則得1分,否則得-1分,則拿4次所得分?jǐn)?shù)ξ的數(shù)學(xué)期望是
-
3
4
-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年湖北五市聯(lián)考理)(12分)

一個(gè)袋中有大小相同的標(biāo)有1,2,3,4,5,6的6個(gè)小球,某人做如下游戲,每次從

袋中拿一個(gè)球(拿后放回),記下標(biāo)號(hào).若拿出球的標(biāo)號(hào)是3的倍數(shù),則得1分,否則得分.

   (Ⅰ)求拿4次至少得2分的概率;

   (Ⅱ)求拿4次所得分?jǐn)?shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分13分)一個(gè)袋中有大小相同的標(biāo)有1,2,3,4,5,6的6個(gè)小球,某人做如下游戲,每次從袋中拿一個(gè)球(拿后放回),記下標(biāo)號(hào).若拿出球的標(biāo)號(hào)是3的倍數(shù),則得1分,否則得分.

   (Ⅰ)求拿4次至少得2分的概率;   (Ⅱ)求拿4次所得分?jǐn)?shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案