如圖的多面體ABC-DEFG中,AB、AC、AD兩兩垂直,平面ABC∥DEFG,平面BEF∥ADGC,AB=AD=DG=2,AC=EF=1,則該多面體的體積為_(kāi)_______.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,P-ABC是底面邊長(zhǎng)為1的正三棱錐,D、E、F分別為棱長(zhǎng)PA、PB、PC上的點(diǎn),截面DEF∥底面ABC,且棱臺(tái)DEF-ABC與棱錐P-ABC的棱長(zhǎng)和相等.(棱長(zhǎng)和是指多面體中所有棱的長(zhǎng)度之和)
(1)證明:P-ABC為正四面體;
(2)若PD=PA=
12
求二面角D-BC-A的大小;(結(jié)果用反三角函數(shù)值表示)
(3)設(shè)棱臺(tái)DEF-ABC的體積為V,是否存在體積為V且各棱長(zhǎng)均相等的直平行六面體,使得它與棱臺(tái)DEF-ABC有相同的棱長(zhǎng)和?若存在,請(qǐng)具體構(gòu)造出這樣的一個(gè)直平行六面體,并給出證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,多面體ABCDE的一個(gè)面ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形BCDE為平行四邊形,且CD⊥平面ABC.
(1)證明:BC⊥平面ACD;
(2)若AB=5,BC=4,tan∠EAB=
45
,求多面體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(廣東A卷)數(shù)學(xué)(理科) 題型:選擇題

如圖1,△ ABC為三角形,// // ,  ⊥平面ABC 且3== =AB,則多面體△ABC -的正視圖(也稱主視圖)是

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江西省模擬題 題型:解答題

如圖,多面體ABC-A1B1C1中,三角形ABC是邊長(zhǎng)為4的正三角形,AA1∥BB1∥CC1,AA1⊥平面ABC,AA1=BB1=2CC1=4。
(1)若O是AB的中點(diǎn),求證:OC⊥A1B;
(2)在線段AB1上是否存在一點(diǎn)D,使得CD∥平面A1B1C1,若存在確定點(diǎn)D的位置;若不存在,說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案