【題目】我國南宋著名數學家秦九韶發(fā)現了從三角形三邊求三角形面積的“三斜公式”,設△ABC三個內角A、B、C所對的邊分別為a、b、c,面積為S,則“三斜求積”公式為 .若a2sinC=4sinA,(a+c)2=12+b2 , 則用“三斜求積”公式求得△ABC的面積為( )
A.
B.2
C.3
D.
科目:高中數學 來源: 題型:
【題目】設集合A、B均為實數集R的子集,記:A+B={a+b|a∈A,b∈B};
(1)已知A={0,1,2},B={﹣1,3},試用列舉法表示A+B;
(2)設a1= ,當n∈N* , 且n≥2時,曲線 的焦距為an , 如果A={a1 , a2 , …,an},B= ,設A+B中的所有元素之和為Sn , 對于滿足m+n=3k,且m≠n的任意正整數m、n、k,不等式Sm+Sn﹣λSk>0恒成立,求實數λ的最大值;
(3)若整數集合A1A1+A1 , 則稱A1為“自生集”,若任意一個正整數均為整數集合A2的某個非空有限子集中所有元素的和,則稱A2為“N*的基底集”,問:是否存在一個整數集合既是自生集又是N*的基底集?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設向量 =(cosθ,sinθ), =(﹣ , );
(1)若 ∥ ,且θ∈(0,π),求θ;
(2)若|3 + |=| ﹣3 |,求| + |的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知O為坐標原點,F是橢圓C: + =1(a>b>0)的左焦點,A,B分別為C的左,右頂點.P為C上一點,且PF⊥x軸,過點A的直線l與線段PF交于點M,與y軸交于點E.若直線BM經過OE的中點,則C的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
已知曲線C的極坐標方程是ρ=4cosθ.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數方程是: (t是參數).
(1)若直線l與曲線C相交于A、B兩點,且|AB|= ,試求實數m值.
(2)設M(x,y)為曲線C上任意一點,求x+2y的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓O:x2+y2=1過橢圓C: (a>b>0)的短軸端點,P,Q分別是圓O與橢圓C上任意兩點,且線段PQ長度的最大值為3. (Ⅰ)求橢圓C的方程;
(Ⅱ)過點(0,t)作圓O的一條切線交橢圓C于M,N兩點,求△OMN的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某超市從現有甲、乙兩種酸奶的日銷售量(單位:箱)的1200個數據(數據均在區(qū)間(0,50]內)中,按照5%的比例進行分層抽樣,統計結果按(0,10],(10,20],(20,30],(30,40],(40,50]分組,整理如下圖:
(Ⅰ)寫出頻率分布直方圖(圖乙)中a的值;記所抽取樣本中甲種酸奶與乙種酸奶日銷售量的方差分別為 , ,試比較 與 的大。ㄖ恍鑼懗鼋Y論);
(Ⅱ)從甲種酸奶日銷售量在區(qū)間(0,20]的數據樣本中抽取3個,記在(0,10]內的數據個數為X,求X的分布列;
(Ⅲ)估計1200個日銷售量數據中,數據在區(qū)間(0,10]中的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在[0,1]上的函數f(x)滿足:
①f(0)=f(1)=0;
②對所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|< |x﹣y|.
若對所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,則m的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,F是拋物線C:x2=2py(p>0)的焦點,M是拋物線C上位于第一象限內的任意一點,過M,F,O三點的圓的圓心為Q,點Q到拋物線C的準線的距離為 .
(1)求拋物線C的方程;
(2)是否存在點M,使得直線MQ與拋物線C相切于點M?若存在,求出點M的坐標;若不存在,說明理由;
(3)若點M的橫坐標為 ,直線l:y=kx+ 與拋物線C有兩個不同的交點A,B,l與圓Q有兩個不同的交點D,E,求當 ≤k≤2時,|AB|2+|DE|2的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com