已知總體的各個(gè)體的值由小到大依次為2,3,3,7,a,b,12,13.7,18.3,20,且總體的中位數(shù)為10.5,平均數(shù)為10.若要使該總體的方差最小,則a、b的取值分別是    
【答案】分析:根據(jù)中位數(shù)的定義得到a與b的關(guān)系式,要求總體的方差最小,即要求(a-10)2+(b-10)2最小,利用a與b的關(guān)系式消去a,得到關(guān)于b的二次函數(shù),求出函數(shù)的最小值即可得到a和b的值.
解答:解:這10個(gè)數(shù)的中位數(shù)為=10.5.
這10個(gè)數(shù)的平均數(shù)為10.
要使總體方差最小,
即(a-10)2+(b-10)2最小.
又∵(a-10)2+(b-10)2=(21-b-10)2+(b-10)2
=(11-b)2+(b-10)2=2b2-42b+221,
∴當(dāng)b=10.5時(shí),(a-10)2+(b-10)2取得最小值.
又∵a+b=21,
∴a=10.5,b=10.5.
故答案為:a=10.5,b=10.5
點(diǎn)評(píng):考查學(xué)生掌握中位數(shù)及方差的求法,以及會(huì)利用函數(shù)的方法求最小值.此題是一道綜合題.要求學(xué)生靈活運(yùn)用二次函數(shù)的知識(shí)解決數(shù)學(xué)問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知總體的各個(gè)體的值由小到大依次為2,3,3,7,a,b,12,13.7,18.3,20,且總體的中位數(shù)為10.5,平均數(shù)為10.若要使該總體的方差最小,則a、b的取值分別是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知總體的各個(gè)體的值由小到大依次為2,3,3,7,a,b,12,15,18,20,且總體的中位數(shù)為10,若要使該總體的方差最小,則a、b的取值分別是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知總體的各個(gè)體的值由小到大依次為2,3,4,7,a,b,12,13.7,17.3,20(a>0,b>0),且總體的中位數(shù)為10.5,若總體的方差最小時(shí),則函數(shù)f(x)=ax2+2bx+1的最小值是
-9.5
-9.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知總體的各個(gè)體的值由小到大依次為2,3,3,7,a,b,12,14,18,20,且總體的中位數(shù)為10.5(將一組數(shù)據(jù)按大小依次排列,把處在最中間位置的一個(gè)數(shù)據(jù)或最中間兩個(gè)數(shù)據(jù)的平均數(shù)叫做這組數(shù)據(jù)的中位數(shù)).
(1)求該總體的平均數(shù);
(2)求a的值,使該總體的方差最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知總體的各個(gè)體的值由小到大依次為2.5,3,3,6.5,a,b,12,13.7,18.3,20,且總體的中位數(shù)為10.5,下列中a、b的值使總體方差最小的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案