在等比數(shù)列{an}中,已知a3=1
1
2
,S3=4
1
2
,求a1與q.
分析:先看當(dāng)q=1時(shí)等式成立,再看當(dāng)q≠1根據(jù)等比數(shù)列的通項(xiàng)公式和求和公式聯(lián)立方程組,求的q.綜合答案可得.
解答:解:當(dāng)q=1時(shí),S3=3a3=9符合題意,a1=a3=
3
2

當(dāng)q≠1時(shí)有
a1q2=
3
2
a1(1-q3)
1-q
=
9
2
解得q=-
1
2
,a1=6
綜上所述得
a1=
3
2
q=1
a1=6
q=-
1
2
點(diǎn)評(píng):本題主要考查了等比數(shù)列的性質(zhì).在解等比數(shù)列問題時(shí)要特別留意q=1的情況.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a4=
2
3
 , a3+a5=
20
9

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}的公比大于1,且bn=log3
an
2
,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,若a1=1,公比q=2,則a12+a22+…+an2=( 。
A、(2n-1)2
B、
1
3
(2n-1)
C、4n-1
D、
1
3
(4n-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,如果a1+a3=4,a2+a4=8,那么該數(shù)列的前8項(xiàng)和為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a1=1,8a2+a5=0,數(shù)列{
1
an
}
的前n項(xiàng)和為Sn,則S5=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,an>0且a2=1-a1,a4=9-a3,則a5+a6=
81
81

查看答案和解析>>

同步練習(xí)冊(cè)答案