設(shè)集合M={x|x≤4},又a=2.那么( 。
A、a⊆MB、a∉M
C、{a}∈MD、{a}⊆M
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專(zhuān)題:計(jì)算題,集合
分析:由已知中集合M={x|x≤4},a=2,我們易判斷出元素a與集合M的關(guān)系,及集合{a}與集合M的關(guān)系,進(jìn)而得到答案.
解答: 解:∵M(jìn)={x|x≤4},a=2,
∴a∈M
即{a}⊆M
故選D.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是元素與集合關(guān)系的判斷,集合與集合關(guān)系的判斷,熟練掌握元素與集合關(guān)系的定義及集合與集合關(guān)系的定義,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在棱長(zhǎng)為1的正方體AC1中,E為AB的中點(diǎn),點(diǎn)P為側(cè)面BB1C1C內(nèi)一動(dòng)點(diǎn)(含邊界),若動(dòng)點(diǎn)P始終滿(mǎn)足PE⊥BD1,則動(dòng)點(diǎn)P的軌跡的長(zhǎng)度為( 。
A、
1
2
B、
2
2
C、
3
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直三棱柱ABC-A1B1C1的六個(gè)頂點(diǎn)在球O上,若AB=3,AC=4,AB⊥AC,AA1=12,則球O的面積為( 。
A、153πB、169π
C、10πD、90π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿(mǎn)足約束條件
x+y≤1
y≥-1
x≥0
,則z=2x+y的最大值為
 
,最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a≠0,函數(shù)f(x)=
2x+a(x<1)
-x-2a(x≥1)
,若f(1-a)=f(1+a),則a的取值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,l1l2是通過(guò)某市開(kāi)發(fā)區(qū)中心O的南北和東西走向的兩條道路,連接M,N兩地的鐵路是一段拋物線(xiàn)弧,它所在的拋物線(xiàn)關(guān)于直線(xiàn)l1對(duì)稱(chēng),M到l1,l2的距離分別是2km,4km;N到l1,l2的距離分別是3km,9km.該市擬在點(diǎn)O的正北方向建設(shè)一座工廠(chǎng),要求廠(chǎng)址到點(diǎn)O的距離大于5km,而不超過(guò)8km,并且鐵路上任意一點(diǎn)到工廠(chǎng)的距離不能小于
6
km.則該廠(chǎng)離點(diǎn)O的最近距離為(工廠(chǎng)視為一點(diǎn))(  )
A、6kmB、6.5km
C、6.25kmD、7km

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

增城石灘某菜民想用籬笆圍成一個(gè)的矩形菜園,請(qǐng)你設(shè)計(jì)此個(gè)矩形的長(zhǎng)和寬,滿(mǎn)足他下列要求:
(1)用籬笆圍成一個(gè)面積為100m2的矩形菜園,要所用籬笆最短;
(2)一段長(zhǎng)為36m的籬笆圍成一個(gè)矩形菜園,菜園的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=a1-x+1(a>0,a≠1)的圖象必經(jīng)過(guò)的點(diǎn)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在下列給出的四個(gè)命題中,為真命題的是( 。
A、?a∈R,?b∈Q,a2+b2=0
B、?n∈Z,?m∈Z,nm=m
C、?n∈Z,?m∈Z,n>m2
D、?a∈R,?b∈Q,a2+b2=1

查看答案和解析>>

同步練習(xí)冊(cè)答案