(2012•武清區(qū)一模)如圖,六棱錐P-ABCDEF的底面ABCDEF是邊長(zhǎng)為l的正六邊形,頂點(diǎn)P在底面上的射影是BF的中點(diǎn)O.
(1)求證:PA⊥BF;
(2)若直線PB與平面ABCDEF所成的角為
π4
,求二面角A-PB-D的余弦值.
分析:(1)利用線面垂直證明線線垂直,即證明BF⊥平面PAO;
(2)以O(shè)B,OD,OP分別為x,y,z軸,建立空間直角坐標(biāo)系,用坐標(biāo)表示點(diǎn),用坐標(biāo)表示向量,進(jìn)而求出兩平面的法向量,利用向量的夾角公式可求二面角A-PB-D的余弦值.
解答:(1)證明:連接OA,則∵AB=AF,BF的中點(diǎn)O,∴AO⊥BF
∵頂點(diǎn)P在底面上的射影是BF的中點(diǎn)O
∴PO⊥BF
∵AO∩PO=O
∴BF⊥平面PAO
∵PA?平面PAO
∴PA⊥BF;
(2)解:∵頂點(diǎn)P在底面上的射影是BF的中點(diǎn)O
∴∠PBO為直線PB與平面ABCDEF所成的角
∵直線PB與平面ABCDEF所成的角為
π
4
,
∴∠PBO=
π
4

以O(shè)B,OD,OP分別為x,y,z軸,建立空間直角坐標(biāo)系,則A(0,-
1
2
,0),B(-
3
2
,0,0),P(0,0,
3
),D(0,
3
2
,0)
PB
=(-
3
2
,0, -
3
)
,
AB
=(-
3
2
,
1
2
,0)
,
BD
=(
3
2
,
3
2
,0)

設(shè)平面APB的法向量為
m
=(x,y,z)
,則
m
PB
=0
m
AB
=0
,
-
3
2
x-
3
z=0
-
3
2
x+
1
2
y=0
,領(lǐng)z=-1,可得
m
=(2,2
3
,-1)

同理可得平面DPB的法向量為
n
=(-2,
2
3
3
,1)

設(shè)二面角A-PB-D的平面角為α,則cosα=
m
n
|
m
||
n
|
=-
3
17×19
=-
969
323
點(diǎn)評(píng):本題考查線線垂直,考查面面角,解題的關(guān)鍵是利用線面垂直證明線線垂直,利用向量法,求面面角,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•武清區(qū)一模)若i為虛數(shù)單位,則復(fù)數(shù)
-1+2i
1-i
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•武清區(qū)一模)在(
1
x
-
x
)10
的二項(xiàng)展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)的項(xiàng)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•武清區(qū)一模)命題“?x∈(1,2),x2>x+1”的否定為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•武清區(qū)一模)己知數(shù)列{an}是等比數(shù)列,其前n項(xiàng)和為Sn,若a1=1,S1+S2+S3=3,則S10的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•武清區(qū)一模)拋物線y2=4x的準(zhǔn)線與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的兩條漸近線相交得二交點(diǎn),若二交點(diǎn)間的距離為4,則該雙曲線的離心率為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案