已知數(shù)列{an}的通項(xiàng)公式為an=(2n-1)•2n,我們用錯位相減法求其前n項(xiàng)和Sn:由Sn=1×2+3×22+5×23+…(2n-1)•2n得2Sn=1×22+3×23+5×24+…(2n-1)•2n+1,兩式項(xiàng)減得:-Sn=2+2×22+2×23+…+2×2n-(2n-1)•2n+1,求得Sn=(2n-3)•2n+1+6.類比推廣以上方法,若數(shù)列{bn}的通項(xiàng)公式為bn=n2•2n,
則其前n項(xiàng)和Tn= .
【答案】分析:先如題設(shè)中錯位相減法,正好求得Tn=-Sn+n2•2n+1進(jìn)而得到答案.
解答:解:Tn=1×2+4×22+9×23+…n2•2n
∴2Tn=1×22+4×23+9×24+…n2•2n+1
∴-Tn=1×2+3×22+5×23+…(2n-1)2n-n2•2n+1
即Tn=-Sn+n2•2n+1=(n2-2n+3)•2n+1-6
故答案為:(n2-2n+3)•2n+1-6
點(diǎn)評:本題主要考查數(shù)列的求和問題.錯位相減法是解決數(shù)列求和問題常用的方法,應(yīng)熟練掌握.