【題目】【2018安徽淮南市高三一模(2月)】已知函數(shù).
(I)若,討論函數(shù)的單調(diào)性;
(II)曲線與直線交于, 兩點(diǎn),其中,若直線斜率為,求證: .
【答案】(I)答案見(jiàn)解析;(II)證明見(jiàn)解析.
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(2)問(wèn)題等價(jià)于,令,則,問(wèn)題轉(zhuǎn)化為只需證,根據(jù)函數(shù)的單調(diào)性證明即可.
試題解析:
(1) , ,
當(dāng)時(shí),恒有, 在區(qū)間上是增函數(shù),
當(dāng)時(shí),令,即,解得;令,即,解得, 在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù).
綜上,當(dāng)時(shí), 在區(qū)間上是增函數(shù);
當(dāng)時(shí), 在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù).
(2)證明: ,要證明,
即證,等價(jià)于,令 (由,知),
則只需證,由知,故等價(jià)于 (*)
①令,則,所以在上是增函數(shù),
當(dāng)時(shí), ,所以;
②令,則,所以在內(nèi)是增函數(shù),
當(dāng)時(shí), ,所以,
綜上, .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電視臺(tái)問(wèn)政直播節(jié)目首場(chǎng)內(nèi)容是“讓交通更順暢”.A、B、C、D四個(gè)管理部門(mén)的負(fù)責(zé)人接受問(wèn)政,分別負(fù)責(zé)問(wèn)政A、B、C、D四個(gè)管理部門(mén)的現(xiàn)場(chǎng)市民代表(每一名代表只參加一個(gè)部門(mén)的問(wèn)政)人數(shù)的條形圖如下.為了了解市民對(duì)武漢市實(shí)施“讓交通更順暢”幾個(gè)月來(lái)的評(píng)價(jià),對(duì)每位現(xiàn)場(chǎng)市民都進(jìn)行了問(wèn)卷調(diào)查,然后用分層抽樣的方法從調(diào)查問(wèn)卷中抽取20份進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下面表格所示:
滿意 | 一般 | 不滿意 | |
A部門(mén) | 50% | 25% | 25% |
B部門(mén) | 80% | 0 | 20% |
C部門(mén) | 50% | 50% | 0 |
D部門(mén) | 40% | 20% | 40% |
(1)若市民甲選擇的是A部門(mén),求甲的調(diào)查問(wèn)卷被選中的概率;
(2)若想從調(diào)查問(wèn)卷被選中且填寫(xiě)不滿意的市民中再選出2人進(jìn)行電視訪談,求這兩人中至少有一人選擇的是D部門(mén)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,多面體中, 是正方形, 是梯形, , , 平面且, 分別為棱的中點(diǎn).
(Ⅰ)求證:平面平面;
(Ⅱ)求平面和平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,橢圓的短軸為,,離心率,為第一象限內(nèi)橢圓上的任意一點(diǎn),設(shè)軸于,為線段的中點(diǎn),過(guò)作直線軸.
(1)求橢圓的方程;
(2)若的縱坐標(biāo)為,求直線截橢圓所得的弦長(zhǎng);
(3)若直線交直線于,為直線上一點(diǎn),且為原點(diǎn)),證明:為線段的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓經(jīng)過(guò)點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)若圓的任意一條切線與橢圓E相交于P,Q兩點(diǎn),試問(wèn): 是否為定值? 若是,求這個(gè)定值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】十九大指出中國(guó)的電動(dòng)汽車(chē)革命早已展開(kāi),通過(guò)以新能源汽車(chē)替代汽/柴油車(chē),中國(guó)正在大力實(shí)施一項(xiàng)將重塑全球汽車(chē)行業(yè)的計(jì)劃.2018年某企業(yè)計(jì)劃引進(jìn)新能源汽車(chē)生產(chǎn)設(shè)備,通過(guò)市場(chǎng)分析,全年需投入固定成本2500萬(wàn)元,每生產(chǎn)x(百輛),需另投入成本萬(wàn)元,且.由市場(chǎng)調(diào)研知,每輛車(chē)售價(jià)5萬(wàn)元,且全年內(nèi)生產(chǎn)的車(chē)輛當(dāng)年能全部銷(xiāo)售完.
(1)求出2018年的利潤(rùn)L(x)(萬(wàn)元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤(rùn)=銷(xiāo)售額-成本)
(2)2018年產(chǎn)量為多少百輛時(shí),企業(yè)所獲利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為橢圓的右焦點(diǎn), 為上的任意一點(diǎn).
(1)求的取值范圍;
(2)是上異于的兩點(diǎn),若直線與直線的斜率之積為,證明: 兩點(diǎn)的橫坐標(biāo)之和為常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足: , .
(1)設(shè),求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線的焦點(diǎn)為,拋物線上一定點(diǎn).
(1)求拋物線的方程及準(zhǔn)線的方程;
(2)過(guò)焦點(diǎn)的直線(不經(jīng)過(guò)點(diǎn))與拋物線交于兩點(diǎn),與準(zhǔn)線交于點(diǎn),記的斜率分別為,問(wèn)是否存在常數(shù),使得成立?若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com