15.已知A={x|1<x<2},B={x|2a<x<a+1}且$B\begin{array}{l}?\\≠\end{array}A$,則a的取值范圍是$[\frac{1}{2},+∞)$.

分析 根據(jù)${B}_{≠}^{?}A$,建立條件關(guān)系即可求實數(shù)a的取值范圍.

解答 解:由題意:A={x|1<x<2},B={x|2a<x<a+1}
∵${B}_{≠}^{?}A$,
∴當B=∅時,滿足題意,此時2a≥a+1,解得:a≥1.
當B≠∅時,要滿足題意,此時需要$\left\{\begin{array}{l}{2a≥1}\\{a+1<2}\end{array}\right.$或$\left\{\begin{array}{l}{2a>1}\\{a+1≤2}\end{array}\right.$,
解得:$\frac{1}{2}≤a≤1$,
綜上可得a的取值范圍是[$\frac{1}{2},+∞$).
故答案為:[$\frac{1}{2},+∞)$.

點評 本題主要考查集合的基本運算,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.給下列五個命題:
①若方程x2+(a-3)x+a=0有一個正實根,一個負實根,則a<0;
②函數(shù)$y=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$是偶函數(shù),但不是奇函數(shù);
③函數(shù)f(x)的值域是[-2,2],則函數(shù)f(x+1)的值域為[-3,1];
④設(shè)函數(shù)y=f(x)的定義域為R,則函數(shù)y=f(1-x)與y=f(x-1)的圖象關(guān)于y軸對稱;
⑤一條曲線$y=\left\{\begin{array}{l}3-{x^2}(x∈[-\sqrt{3},\sqrt{3}])\\{x^2}-3(x∈(-∞,-\sqrt{3})∪(\sqrt{3},+∞))\end{array}\right.$和直線y=a(a∈R)的公共點個數(shù)是m,則m的值不可能是1.
其中正確命題的序號為①⑤(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知命題p:f(x)=$\sqrt{1-a•{3}^{x}}$在x∈(-∞,0]上有意義,命題q:函數(shù) y=lg(ax2-x+a ) 的定義域為R.若p∨q為真,p∧q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知△ABC的面積為$\sqrt{3}$且b=2,c=2,則∠A等于( 。
A.30°B.30°或150°C.60°D.60°或120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.計算下列各式的值:
(1)${27^{\frac{1}{3}}}+{2^{-1}}-{π^0}+{(\sqrt{8})^{-\frac{2}{3}}}$;    
(2)(lg2)2+lg2×lg50+lg25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知$m=a+\frac{1}{a-2}({a>2})$,n=4-x2,則( 。
A.m>nB.m<nC.m=nD.m≥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知橢圓的一個焦點為F(0,1),離心率$e=\frac{1}{2}$,則橢圓的標準方程為$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=$\frac{{x}^{2}}{{3}^{x}-1}$的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標系xOy中,若雙曲線${x^2}-\frac{y^2}{b^2}=1(b>0)$的焦點到其漸近線的距離等于拋物線y2=2px上的點M(1,2)到拋物線焦點的距離,求拋物線及雙曲線的標準方程.

查看答案和解析>>

同步練習冊答案