8.設(shè)a為實(shí)常數(shù),y=f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí)$f(x)=x+\frac{a^2}{x}+7$,若f(x)≥a+1對(duì)一切 x≥0成立,則a的取值范圍為a≤-1或a≥8.

分析 根據(jù)函數(shù)奇偶性的對(duì)稱(chēng)性求出當(dāng)x>0時(shí)的解析式,利用基本不等式的性質(zhì)求出函數(shù)f(x)的最值即可得到結(jié)論.

解答 解:設(shè)x>0,則-x<0.
∵當(dāng)x<0時(shí),$f(x)=x+\frac{a^2}{x}+7$,
∴f(-x)=-x-$\frac{{a}^{2}}{x}$+7.
∵y=f(x)是定義在R上的奇函數(shù),
∴f(x)=-f(-x)=x+$\frac{{a}^{2}}{x}$-7.
∵f(x)≥a+1對(duì)一切x≥0成立,
∴當(dāng)x>0時(shí),x+$\frac{{a}^{2}}{x}$-7≥a+1恒成立;且當(dāng)x=0時(shí),0≥a+1恒成立.
①由當(dāng)x=0時(shí),0≥a+1恒成立,解得a≤-1.
②由當(dāng)x>0時(shí),x+$\frac{{a}^{2}}{x}$-7≥a+1恒成立,可得:2|a|-7≥a+1
解得a≤-8或a≥8.
綜上可得:a≤-1或a≥8.
因此a的取值范圍是:a≤-1或a≥8.
故答案為:a≤-1或a≥8.

點(diǎn)評(píng) 本題主要考查函數(shù)恒成立問(wèn)題,根據(jù)函數(shù)的奇偶性求出函數(shù)的解析式,以及利用基本不等式求出最小值是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知集合$A=\left\{{\left|{\frac{x-2}{2x-1}>}\right.0}\right\}$,B={x|bx<1},若A∪B=R,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若函數(shù)f(x)=sin2x向右平移$\frac{π}{6}$個(gè)單位后,得到y(tǒng)=g(x),則關(guān)于y=g(x)的說(shuō)法正確的是( 。
A.圖象關(guān)于點(diǎn)$({-\frac{π}{6},0})$中心對(duì)稱(chēng)B.圖象關(guān)于$x=-\frac{π}{6}$軸對(duì)稱(chēng)
C.在區(qū)間$[{-\frac{5π}{12},-\frac{π}{6}}]$單調(diào)遞增D.在$[{-\frac{π}{12},\frac{5π}{12}}]$單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,矩形ABCD 中,AD⊥平面ABE,AE=FB=BC=2,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE,AC,BD交于G點(diǎn)
(1)求證:AE∥平面BFD
(2)求證:AE⊥平面BCE
(3)求三棱柱C-BGF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.lg$\frac{{4\sqrt{2}}}{7}-lg\frac{2}{3}+lg7\sqrt{5}$=lg6+$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.定義在R上的奇函數(shù)f(x)對(duì)任意x∈R都有f(x)=f(x+4),當(dāng)x∈(-2,0)時(shí),f(x)=2x,則f(2016)-f(2015)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若點(diǎn)$(sin\frac{5π}{6},cos\frac{8π}{3})$在角α的終邊上,則sinα的值為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$-\frac{{\sqrt{2}}}{2}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=kax(k為常數(shù),a>0且a≠1)的圖象過(guò)點(diǎn)A(0,1)和點(diǎn)B(2,16).
(1)求函數(shù)的解析式;
(2)g(x)=b+$\frac{1}{f(x)+1}$是奇函數(shù),求常數(shù)b的值;
(3)對(duì)任意的x1,x2∈R且x1≠x2,試比較$f(\frac{{{x_1}+{x_2}}}{2})$與$\frac{{f({x_1})+f({x_2})}}{2}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)命題 p:$?{x_0}∈R,{x_0}^2>1$,則?p為?x∈R,x2≤1.

查看答案和解析>>

同步練習(xí)冊(cè)答案