如圖,在四棱錐P-ABCD中,PA⊥平面ABCD, AB//CD,∠DAB=90°,PA=AD=DC=1,AB=2,M為PB的中點(diǎn).
(I)證明:MC//平面PAD;
(II)求直線MC與平面PAC所成角的余弦值.
(1)根據(jù)題意,由于M為PB的中點(diǎn),取PA中點(diǎn)E,能推理得到ME//AB,得到證明
(2)
【解析】
試題分析:解:
(1)M為PB的中點(diǎn),取PA中點(diǎn)E,連ME,DE
則ME//AB, 且ME=AB,又CD//AB, 且CD=AB, 四邊形CDEM為平行四邊形,
CM//ED, CM面PAD, MC//平面PAD
(2)平面ABCD, PABC
又, BCAC
BC平面PAC, 平面PAC平面PBC, 取PC中點(diǎn)N,則MN//BC,
從而MN平面PAC,所以為直線MC與平面PAC所成角,記為,
NC=, MC,
故直線MC與平面PAC所成角的余弦值為
考點(diǎn):線面平行和線面角
點(diǎn)評(píng):主要是考查了空間中線面平行以及線面角的求解的綜合運(yùn)用,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com