函數(shù)的解析式為f(x)=
2
x
-1

(1)用定義證明f(x)在(0,+∞)上是減函數(shù);
(2)求y=f(x)在[2,6]上的最值.
考點(diǎn):函數(shù)單調(diào)性的判斷與證明,函數(shù)單調(diào)性的性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用函數(shù)單調(diào)性的定義證明即可;
(2)利用第一問(wèn)的結(jié)論,由減函數(shù)得出最值.
解答: 解:(1)設(shè)任意的x1,x2∈(0,+∞),且x1<x2,則
f(x1)-f(x2)=(
2
x1
-1)-(
2
x2
-1)=
2(x2-x1)
x1x2
,
∵x1,x2∈(0,+∞),且x1<x2
∴x2-x1>0,x1x2>0
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
∴f(x)在(0,+∞)上是減函數(shù);
(2)由(1)得y=f(x)在[2,6]上是減函數(shù),則
當(dāng)x=2時(shí),f(x)max=0,當(dāng)x=6時(shí),f(x)min=-
2
3
,
點(diǎn)評(píng):考查學(xué)生對(duì)函數(shù)單調(diào)性的定義的掌握運(yùn)用及應(yīng)用函數(shù)的增減性求最值的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cosx(
3
sinx+cosx),x∈R.
(Ⅰ)求f(x)的最小正周期及值域;
(Ⅱ)求f(x)單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某產(chǎn)品的廣告費(fèi)用x與銷(xiāo)售額y的統(tǒng)計(jì)數(shù)據(jù)如表
廣 告 費(fèi) 用 (萬(wàn)元) 4 2 3 5
銷(xiāo) 售 額 (萬(wàn)元) 49 26 39 54
根據(jù)上表可得回歸方程
y
=
b
x+
a
中的
b
為9.4.
(1)求
a
的值;
(2)據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬(wàn)元時(shí),銷(xiāo)售額為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}滿(mǎn)足an=2an-1+n(n≥2且n∈N*),{an}的前n項(xiàng)和為Sn,數(shù)列{bn}滿(mǎn)足bn=an+n+2.
(l)若a1=1,求S4
(2)試判斷數(shù)列{bn}是否為等比數(shù)列?請(qǐng)說(shuō)明理由;
(3)若a1=-3,m,n,p∈N*,且m+n=2p.試比較Sm+Sn與2Sp的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,cos2C+2
2
cosC+2=0.
(1)求角C的大。
(2)若b=
2
a,△ABC的面積為
2
2
sinAsinB,求sinA及c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
tlnx
x
(t≠0的常數(shù)).
(Ⅰ)若f(x)的單調(diào)遞增區(qū)間是(0,e)(e是自然對(duì)數(shù)的底數(shù)),求t的取值范圍;
(Ⅱ)若函數(shù)g(x)=(f(x))2+4f(x)+4只有一個(gè)零點(diǎn),求t的取值范圍;
(Ⅲ)若t>0,對(duì)任意x≥1,f(x)≤
(x2-1)t2
x2
恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinxcosx+
3
cos2x.
(Ⅰ)求函數(shù)f(x)的周期;
(Ⅱ)若x∈[0,
π
3
],求函數(shù)分f(x)的值域;
(Ⅲ)如果△ABC的三邊a、b、c滿(mǎn)足b2=ac,且邊b所對(duì)的角為x,試求cosx的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2012年3月2日,國(guó)家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》.其中規(guī)定:居民區(qū)的PM2.5年平均濃度不得超過(guò)35微克/立方米,PM2.5的24小時(shí)平均濃度不得超過(guò)75微克/立方米. 某城市環(huán)保部門(mén)隨機(jī)抽取了一居民區(qū)去年20天PM2.5的24小時(shí)平均濃度的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如下:
組別 PM2.5濃度(微克/立方米) 頻數(shù)(天) 頻率
第一組 (0,25] 5 0.25
第二組 (25,50] 10 0.5
第三組 (50,75] 3 0.15
第四組 (75,100) 2 0.1
合計(jì) 20 1
(Ⅰ)根據(jù)上面的頻率分布表,估計(jì)該居民區(qū)PM2.5的24小時(shí)平均濃度超過(guò)50微克/立方米的概率;
(Ⅱ)計(jì)算樣本眾數(shù)、中位數(shù)和平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進(jìn)?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sinx(3sinx+4cosx)(x∈R)的最大值為M,最小正周期為T(mén),則有序數(shù)對(duì)(M,T)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案