已知a,b是正數(shù),求證(a+
1
b
)(2b+
1
2a
)≥
9
2
分析:把不等式左邊利用多項(xiàng)式的乘法法則計(jì)算后,由a與b為正數(shù),利用均值不等式a+b≥2
ab
,當(dāng)且僅當(dāng)a=b時(shí)取等號(hào),即可求出左邊式子的最小值為
9
2
,得證.
解答:證明:因?yàn)閍,b是正數(shù),利用均值不等式,
(a+
1
b
)(2b+
1
2a
)=2ab+
1
2
+2+
1
2ab
             
=(2ab+
1
2ab
)+
5
2
≥2+
5
2
=
9
2
,
所以(a+
1
b
)(2b+
1
2a
)≥
9
2
點(diǎn)評(píng):此題考查了基本不等式的運(yùn)用,是一道證明題.熟練掌握基本不等式是證明的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,CP是圓O的切線,P為切點(diǎn),直線CO交圓O于A,B兩點(diǎn),AD⊥CP,垂足為D.
求證:∠DAP=∠BAP.
B.選修4-2:矩陣與變換
設(shè)a>0,b>0,若矩陣A=
.
a0
0b
.
把圓C:x2+y2=1變換為橢圓E:
x2
4
+
y2
3
=1.
(1)求a,b的值;(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標(biāo)系與參數(shù)方程在極坐標(biāo)系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-\frac{π}{6})=a截得的弦長為2
3
求實(shí)數(shù)a的值.
D.選修4-5:不等式選講已知a,b是正數(shù),求證:a2+4b2+
1
ab
≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題:在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.請(qǐng)?jiān)诖鹁砑堉付▍^(qū)域內(nèi)作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,AD是∠BAC的平分線,⊙O過點(diǎn)A且與BC邊相切于點(diǎn)D,與AB、AC分別交于E,F(xiàn),求證:EF∥BC.

B.選修4-2:矩陣與變換
已知a,b∈R若矩陣M=
.
-1a
b3
.
所對(duì)應(yīng)的變換把直線l:2x-y=3變換為自身,求a,b的值.

C.選修4-4:坐標(biāo)系與參數(shù)方程
將參數(shù)方程
x=2(t+
1
t
)
y=4(t-
1
t
)
(t為參數(shù))化為普通方程.
D.選修4-5:不等式選講
已知a,b是正數(shù),求證:(a+
1
b
)(2b+
1
2a
)≥
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.
請(qǐng)?jiān)诖鹁砑堉付▍^(qū)域內(nèi)作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講如圖,AD是∠BAC的平分線,⊙O過點(diǎn)A且與BC邊相切于點(diǎn)D,與AB,AC分別交于E,F(xiàn),求證:EF∥BC.
B.選修4-2:矩陣與變換
已知a,b∈R,若矩陣M=[
-1
b
a
3
]所對(duì)應(yīng)的變換把直線l:2x-y=3變換為自身,求a,b的值.
C.選修4-4:坐標(biāo)系與參數(shù)方程將參數(shù)方程
x=2(t+
1
t
)
y=4(t-
1
t
)
t為參數(shù))化為普通方程.
D.選修4-5:已知a,b是正數(shù),求證(a+
1
b
)(2b+
1
2a
)≥92.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

選做題在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.
請(qǐng)?jiān)诖鹁砑堉付▍^(qū)域內(nèi)作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講如圖,AD是∠BAC的平分線,⊙O過點(diǎn)A且與BC邊相切于點(diǎn)D,與AB,AC分別交于E,F(xiàn),求證:EF∥BC.
B.選修4-2:矩陣與變換
已知a,b∈R,若矩陣M=[數(shù)學(xué)公式]所對(duì)應(yīng)的變換把直線l:2x-y=3變換為自身,求a,b的值.
C.選修4-4:坐標(biāo)系與參數(shù)方程將參數(shù)方程數(shù)學(xué)公式t為參數(shù))化為普通方程.
D.選修4-5:已知a,b是正數(shù),求證(a+數(shù)學(xué)公式)(2b+數(shù)學(xué)公式)≥92.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南京市高三(上)學(xué)情調(diào)研數(shù)學(xué)試卷(二)(解析版) 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,CP是圓O的切線,P為切點(diǎn),直線CO交圓O于A,B兩點(diǎn),AD⊥CP,垂足為D.
求證:∠DAP=∠BAP.
B.選修4-2:矩陣與變換
設(shè)a>0,b>0,若矩陣A=把圓C:x2+y2=1變換為橢圓E:=1.
(1)求a,b的值;(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標(biāo)系與參數(shù)方程在極坐標(biāo)系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-\frac{π}{6})=a截得的弦長為2求實(shí)數(shù)a的值.
D.選修4-5:不等式選講已知a,b是正數(shù),求證:a2+4b2≥4.

查看答案和解析>>

同步練習(xí)冊(cè)答案