若函數(shù)上單調(diào)遞減,則實數(shù)的取值范圍為(   )
A.B.C.D.
A

試題分析:,因為函數(shù)上單調(diào)遞減,則在恒成立,等價于上恒成立,所以。故A正確。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知f(x)=ex-ax-1.
(1)求f(x)的單調(diào)增區(qū)間;
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=(x-a)(x-b)2,a,b是常數(shù).
(1)若a≠b,求證:函數(shù)f(x)存在極大值和極小值;
(2)設(shè)(1)中f(x)取得極大值、極小值時自變量的值分別為x1,x2,設(shè)點A(x1,f(x1)),B(x2,f(x2)).如果直線AB的斜率為-,求函數(shù)f(x)和f′(x)的公共遞減區(qū)間的長度;
(3)若f(x)≥mxf′(x)對于一切x∈R恒成立,求實數(shù)m,a,b滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),函數(shù)
(1)若x=2是函數(shù)的極值點,求的值;
(2)設(shè)函數(shù),若≤0對一切都成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)f(x)=ln(1+x)-x-ax2.
(1)當(dāng)x=1時,f(x)取到極值,求a的值;
(2)當(dāng)a滿足什么條件時,f(x)在區(qū)間[-,-]上有單調(diào)遞增區(qū)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=x2-2lnx的單調(diào)遞減區(qū)間是(  )
A.(0,1]B.[1,+∞)
C.(-∞,-1]∪(0,1]D.[-1,0)∪(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)=x3+x,若a,b,,且a+b>0,a+c>0,b+c>0,則f(a)+f(b)+f(c)的值(   )
A.一定大于0B.一定等于0
C.一定小于0D.正負(fù)都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為單調(diào)增函數(shù),則實數(shù)的取值范圍為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù) 
求證:當(dāng)時,函數(shù)在區(qū)間上是單調(diào)遞減函數(shù);
的取值范圍,使函數(shù)在區(qū)間上是單調(diào)函數(shù).

查看答案和解析>>

同步練習(xí)冊答案