(1)已知圓C經(jīng)過A(5,1),B(1,3)兩點(diǎn),圓心在x軸上,求圓C的方程.
(2)求與圓x2+y2-2x+4y+1=0同心,且與直線2x-y+1=0相切的圓的方程.
分析:(1)根據(jù)垂徑定理可得弦AB的垂直平分線必然過圓心,故利用線段中點(diǎn)坐標(biāo)公式求出AB的中點(diǎn)坐標(biāo),由A和B的坐標(biāo)求出直線AB的斜率,根據(jù)兩直線垂直時(shí)斜率的乘積為-1求出線段AB垂直平分線的斜率,由求出的斜率與AB的中點(diǎn)坐標(biāo)得出線段AB的垂直平分線方程,又圓心在x軸上,令求出的直線方程中y=0,求出x的值,可確定出圓心C的坐標(biāo),再由A和C的坐標(biāo),利用兩點(diǎn)間的距離公式求出|AC|的長(zhǎng),即為圓C的半徑,由圓心和半徑寫出圓C的標(biāo)準(zhǔn)方程即可.
(2)求出圓的圓心坐標(biāo),利用圓與直線相切,求出圓的半徑,即可得到圓的方程.
解答:解:(1)∵A(5,1),B(1,3),
∴線段AB的中點(diǎn)坐標(biāo)為(
5+1
2
1+3
2
),即(3,2),
直線AB的斜率kAB=
3-1
1-5
=-
1
2
,
∴線段AB垂直平分線的方程為y-2=2(x-3),即y=2x-4,
又圓心在x軸上,∴令y=0,得到2x-4=0,即x=2,
∴圓心C坐標(biāo)為(2,0),
∴圓的半徑r=|AC|=
(5-2)2+(1-0)2
=
10
,
則圓C的方程為(x-2)2+y2=10. 
(2)解:所求圓的圓心坐標(biāo)為 (1,-2),
因?yàn)橹本與圓相切,所以圓的半徑為:
|2+2+1|
22+1
=
5

所以所求圓的方程為:(x-1)2+(y+2)2=5.
點(diǎn)評(píng):此題考查了圓的標(biāo)準(zhǔn)方程,涉及的知識(shí)有:線段的中點(diǎn)坐標(biāo)公式,兩直線垂直時(shí)斜率滿足的關(guān)系,直線的點(diǎn)斜式方程,一次函數(shù)與坐標(biāo)軸的交點(diǎn),兩點(diǎn)間的距離公式,以及垂徑定理的運(yùn)用,根據(jù)題意確定出圓心C的坐標(biāo)是解本題的關(guān)鍵,考查直線與圓相切的關(guān)系的應(yīng)用,圓的方程的求法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知圓C經(jīng)過A(5,1),B(1,3)兩點(diǎn),圓心在x軸上,求圓C的方程.
(2)求與圓x2+y2-2x+4y+1=0同心,且與直線2x-y+1=0相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)已知圓C經(jīng)過A(5,1),B(1,3)兩點(diǎn),圓心在x軸上,求圓C的方程.
(2)求與圓x2+y2-2x+4y+1=0同心,且與直線2x-y+1=0相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第4章 圓與方程》2013年單元測(cè)試卷(4)(解析版) 題型:解答題

(1)已知圓C經(jīng)過A(5,1),B(1,3)兩點(diǎn),圓心在x軸上,求圓C的方程.
(2)求與圓x2+y2-2x+4y+1=0同心,且與直線2x-y+1=0相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年新疆克拉瑪依市克拉瑪依區(qū)實(shí)驗(yàn)中學(xué)高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

(1)已知圓C經(jīng)過A(5,1),B(1,3)兩點(diǎn),圓心在x軸上,求圓C的方程.
(2)求與圓x2+y2-2x+4y+1=0同心,且與直線2x-y+1=0相切的圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案