【題目】名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如圖所示:

1)求頻率分布直方圖中實(shí)數(shù)的值;

2)估計(jì)20名學(xué)生成績(jī)的平均數(shù);

3)從成績(jī)?cè)?/span>的學(xué)生中任選2人,求此2人的成績(jī)不都在中的概率.

【答案】1;(2分;(3

【解析】

1)根據(jù)頻率分布直方圖,以及頻率之和為1,列出方程,求解,即可得出結(jié)果;

2)根據(jù)頻率分別直方圖,由每組的中間值乘以該組的頻率,再求和,即可得出結(jié)果;

3)根據(jù)題意,分別求出成績(jī)?cè)?/span>,的人數(shù),分別記作,,,;用列舉法寫出總的基本事件,以及滿足條件的基本事件,利用古典概型可得結(jié)果.

1)根據(jù)頻率分布直方圖,由頻率之和為1可得,

,解得;

2)根據(jù)頻率分布直方圖可得,20名學(xué)生成績(jī)的平均數(shù)為:;

3)根據(jù)題意,可得成績(jī)?cè)?/span>的學(xué)生為人,記作;

其中成績(jī)?cè)?/span>的有:人,記作,,

從這5人中任取2人,包含:,,,,,個(gè)基本事件;

2人的成績(jī)不都在中,包含,,,,,,7個(gè)基本事件;

因此2人的成績(jī)不都在中的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)討論函數(shù)的單調(diào)性;

(2)設(shè)函數(shù),若上存在極值,求的取值范圍,并判斷極值的正負(fù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,,分別為,的中點(diǎn),,如圖1.以為折痕將折起,使點(diǎn)到達(dá)點(diǎn)的位置,如圖2.

如圖1 如圖2

(1)證明:平面平面

(2)若平面平面,求直線與平面所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>

(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞減區(qū)間.

(2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下是某地搜集到的新房屋的銷售價(jià)格和房屋的面積的數(shù)據(jù):

房屋面積(

115

110

80

135

105

銷售價(jià)格(萬元)

24.8

21.6

18.4

29.2

22

(1)畫出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;

(2)求線性回歸方程,并在散點(diǎn)圖中加上回歸直線;

(3)據(jù)(2)的結(jié)果估計(jì)當(dāng)房屋面積為150時(shí)的銷售價(jià)格.附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù)是奇函數(shù).

1)求函數(shù)的值域;

2)若上單調(diào)遞減,根據(jù)單調(diào)性定義求實(shí)數(shù)b的取值范圍;

3)在(2)的條件下,若方程在區(qū)間上有且僅有兩個(gè)不同的根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是(

A.經(jīng)過任意三點(diǎn)有且只有一個(gè)平面.

B.過點(diǎn)有且僅有一條直線與異面直線垂直.

C.一條直線與一個(gè)平面平行,它就和這個(gè)平面內(nèi)的任意一條直線平行.

D.與平面相交,則公共點(diǎn)個(gè)數(shù)為有限個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海洋藍(lán)洞是地球罕見的自然地理現(xiàn)象,被喻為“地球留給人類保留宇宙秘密的最后遺產(chǎn)”,我國(guó)擁有世界上最深的海洋藍(lán)洞,若要測(cè)量如圖所示的藍(lán)洞的口徑兩點(diǎn)間的距離,現(xiàn)在珊瑚群島上取兩點(diǎn),,測(cè)得,,,則,兩點(diǎn)的距離為___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個(gè)不同的零點(diǎn).

1)求a的范圍;

2)證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案