在平面幾何中有:Rt△ABC的直角邊分別為a,b,斜邊上的高為h,則
1
a2
+
1
b2
=
1
h2
.類(lèi)比這一結(jié)論,在三棱錐P-ABC中,PA、PB、PC兩兩互相垂直,且PA=a,PB=b,PC=c,此三棱錐P-ABC的高為h,則結(jié)論為
 
分析:立體幾何中的類(lèi)比推理主要是基本元素之間的類(lèi)比:平面?空間,點(diǎn)?點(diǎn)或直線(xiàn),直線(xiàn)?直線(xiàn)或平面,平面圖形?平面圖形或立體圖形,故本題由平面上的直角三角形中的邊與高的關(guān)系式類(lèi)比立體中兩兩垂直的棱的三棱錐中邊與高的關(guān)系即可.
解答:解:∵PA、PB、PC兩兩互相垂直,∴PA⊥平面PBC.
由已知有:PD=
bc
b2+c2
,h=PO=
a•PD
a2+PD2
,
h2=
a2b2c2
a2b2+b2c2+c2a2
,即
1
a2
+
1
b2
+
1
c2
=
1
h2

故答案為:
1
a2
+
1
b2
+
1
c2
=
1
h2
點(diǎn)評(píng):類(lèi)比推理是指依據(jù)兩類(lèi)數(shù)學(xué)對(duì)象的相似性,將已知的一類(lèi)數(shù)學(xué)對(duì)象的性質(zhì)類(lèi)比遷移到另一類(lèi)數(shù)學(xué)對(duì)象上去.其思維過(guò)程大致是:觀(guān)察、比較 聯(lián)想、類(lèi)推 猜測(cè)新的結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面幾何中有:Rt△ABC的直角邊分別為a,b,斜邊上的高為h,則.類(lèi)比這一結(jié)論,在三棱錐P―ABC中,PA、PB、PC兩兩互相垂直,且PA=a,PB=b,PC=c,此三棱錐P―ABC的高為h,則結(jié)論為_(kāi)_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面幾何中有:Rt△ABC的直角邊分別為a,b,斜邊上的高為h,則.類(lèi)比這一結(jié)論,在三棱錐P—ABC中,PA、PB、PC兩點(diǎn)互相垂直,且PA=a,PB=b,PC=c,此三棱錐P—ABC的高為h,則結(jié)論為_(kāi)_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年河南省鄭州外國(guó)語(yǔ)學(xué)校高二下學(xué)期期中考試數(shù)學(xué)卷(文) 題型:填空題

在平面幾何中有:Rt△ABC的直角邊分別為a,b,斜邊上的高為h,則.類(lèi)比這一結(jié)論,在三棱錐P—ABC中,PA、PB、PC兩兩互相垂直,且PA=a,PB=b,PC=c,此三棱錐P—ABC的高為h,則結(jié)論為_(kāi)_____________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010屆高三數(shù)學(xué)每周精析精練:選考部分 題型:填空題

 在平面幾何中有:Rt△ABC的直角邊分別為a,b,斜邊上的高為h,則.類(lèi)比這一結(jié)論,在三棱錐P—ABC中,PA、PB、PC兩兩互相垂直,且PA=a,PB=b,PC=c,此三棱錐P—ABC的高為h,則結(jié)論為_(kāi)_____________

 

查看答案和解析>>

同步練習(xí)冊(cè)答案