設(shè)M={0,1},集合N={x|xÍ M},則M與N的關(guān)系是

[  ]

A.MÎ N
B.NÎ M
C.MÍ N
D.M=N

答案:A
解析:

,∴MÎ N,故選A


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)集M={x|m≤x≤m+
3
4
}
,N={x|n-
1
3
≤x≤n}
,且M、N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“長(zhǎng)度”,那么集合M∩N的長(zhǎng)度的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在A,B,C,D四小題中只能選做2題,每題10分,共計(jì)20分.
A、如圖,AB為⊙O的直徑,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求證:PE是⊙O的切線.
B、設(shè)M是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到2倍,縱坐標(biāo)伸長(zhǎng)到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
C、已知某圓的極坐標(biāo)方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)將極坐標(biāo)方程化為普通方程;并選擇恰當(dāng)?shù)膮?shù)寫(xiě)出它的參數(shù)方程;
(Ⅱ)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.
D、若關(guān)于x的不等式|x+2|+|x-1|≥a的解集為R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2-mx+m(x∈R)同時(shí)滿足:(1)不等式f(x)≤0的解集有且只有一個(gè)元素;(2)在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=f(n),bn=1-
8-man
,我們把所有滿足bi•bi+1<0的正整數(shù)i的個(gè)數(shù)叫做數(shù)列{bn}的異號(hào)數(shù).根據(jù)以上信息,給出下列五個(gè)命題:
①m=0;
②m=4;
③數(shù)列{an}的通項(xiàng)公式為an=2n-5;
④數(shù)列{bn}的異號(hào)數(shù)為2;
⑤數(shù)列{bn}的異號(hào)數(shù)為3.
其中正確命題的序號(hào)為
②⑤
②⑤
.(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)不等式x-x2≥0的解集為M.
(1)求集合M;
(2)若a,b∈M,試比較a3+b3與a2b+ab2的大。
(3)當(dāng)x∈M,不等式2m-1<x(m2-1)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•奉賢區(qū)一模)設(shè)數(shù)集M={x|m≤x≤m+
3
4
},N={x|n-
5
12
≤x≤n},且M,N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“長(zhǎng)度”,那么集合M∩N的“長(zhǎng)度”的最小值是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案