已知D是△ABC邊BC延長(zhǎng)線上一點(diǎn),記數(shù)學(xué)公式數(shù)學(xué)公式+(1-λ)數(shù)學(xué)公式.若關(guān)于x的方程2sin2x-(λ+1)sinx+1=0在[0,2π)上恰有兩解,則實(shí)數(shù)λ的取值范圍是________.

λ<-4或
分析:根據(jù)題意,由D是BC延長(zhǎng)線上一點(diǎn),=(-λ),得到λ<0;令sinx=t,方程2t2-(λ+1)t+1=0在(-1,1)上有唯一解,(2-(λ+1)+1)•(2+(λ+1)+1)<0①,或△=(λ+1)2-8=0②,解出λ 范圍.
解答:∵+(1-λ)=+λ(- )==+(-λ)
又∵=+,∴=(-λ),由題意得-λ>0,∴λ<0.
∵關(guān)于x的方程2sin2x-(λ+1)sinx+1=0在[0,2π)上恰有兩解,令sinx=t,由正弦函數(shù)的圖象知,
方程 2t2-(λ+1)t+1=0 在(-1,1)上有唯一解,
∴[2-(λ+1)+1]•[2+(λ+1)+1]<0 ①,或△=(λ+1)2-8=0 ②,
由①得 λ<-4 或λ>2(舍去). 由②得 λ=-1-2,或 λ=-1+2(舍去).
故答案為 λ<-4或λ=-1-2
點(diǎn)評(píng):本題考查一元二次方程根的分布,兩個(gè)向量加減法及其幾何意義,有題意得到方程 2t2-(λ+1)t+1=0在(-1,1)上有唯一解是解題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•丹東模擬)已知D是△ABC所在平面上任意一點(diǎn),若(
AB
-
BC
)•(
AD
-
CD
)=0,則△ABC一定是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•黃浦區(qū)二模)已知D是△ABC的邊BC上的點(diǎn),且BD:DC=1:2,
AB
=
a
,
AC
=
b
,如圖所示.若用
a
b
表示
AD
,則
AD
=
1
3
a
+
1
3
b
1
3
a
+
1
3
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:丹東模擬 題型:單選題

已知D是△ABC所在平面上任意一點(diǎn),若(
AB
-
BC
)•(
AD
-
CD
)=0,則△ABC一定是(  )
A.直角三角形B.等腰直角三角形
C.等腰三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)高考數(shù)學(xué)領(lǐng)航試卷2(理科)(解析版) 題型:選擇題

已知D是△ABC所在平面上任意一點(diǎn),若()•()=0,則△ABC一定是( )
A.直角三角形
B.等腰直角三角形
C.等腰三角形
D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年遼寧省丹東市四校協(xié)作體高三摸底(零診)數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知D是△ABC所在平面上任意一點(diǎn),若()•()=0,則△ABC一定是( )
A.直角三角形
B.等腰直角三角形
C.等腰三角形
D.等邊三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案