如果一條直線與一個(gè)平面平行,那么過(guò)這平面內(nèi)一點(diǎn)而與這條直線平行的直線必在這個(gè)平面內(nèi).

答案:
解析:

  證明:如圖所示,如果直線b不在平面α內(nèi),則直線b不在平面α有一個(gè)公共點(diǎn)A.過(guò)平行直線a和b作平面β,則平面α、β有過(guò)A點(diǎn)的一條直線,設(shè)為,在平面β內(nèi)直線b與交線相交于A點(diǎn).

  因?yàn)橹本a∥b,所以交線也與直線a相交于A,

  即直線a與平面α相交,這是不可能的.故過(guò)A點(diǎn)而平行于直線a的直線b必在平面α上.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:貴州省遵義四中2010-2011學(xué)年高一下學(xué)期期末考試數(shù)學(xué)試題 題型:013

“如果一條直線與一個(gè)平面垂直,則稱這條直線與這個(gè)平面構(gòu)成一組正交線面對(duì);如果兩個(gè)平面互相垂直,則稱這兩個(gè)平面構(gòu)成一組正交平面對(duì).”在正方體的12條棱和6個(gè)表面中,能構(gòu)成正交線面對(duì)和正交平面對(duì)的組數(shù)分別是

[  ]
A.

12和12

B.

24和24

C.

24和12

D.

48和24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年貴州省遵義四中高一下學(xué)期期末考試數(shù)學(xué) 題型:單選題

“如果一條直線與一個(gè)平面垂直,則稱這條直線與這個(gè)平面構(gòu)成一組正交線面對(duì);如果兩個(gè)平面互相垂直,則稱這兩個(gè)平面構(gòu)成一組正交平面對(duì).”在正方體的12條棱和6個(gè)表面中,能構(gòu)成正交線面對(duì)和正交平面對(duì)的組數(shù)分別是(    )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆貴州省高一下學(xué)期期末考試數(shù)學(xué) 題型:選擇題

“如果一條直線與一個(gè)平面垂直,則稱這條直線與這個(gè)平面構(gòu)成一組正交線面對(duì);如果兩個(gè)平面互相垂直,則稱這兩個(gè)平面構(gòu)成一組正交平面對(duì).”在正方體的12條棱和6個(gè)表面中,能構(gòu)成正交線面對(duì)和正交平面對(duì)的組數(shù)分別是(    )

(A)    (B)    (C)     (D) 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

“如果一條直線與一個(gè)平面垂直,則稱這條直線與這個(gè)平面構(gòu)成一組正交線面對(duì);如果兩個(gè)平面互相垂直,則稱這兩個(gè)平面構(gòu)成一組正交平面對(duì).”在正方體的12條棱和6個(gè)表面中,能構(gòu)成正交線面對(duì)和正交平面對(duì)的組數(shù)分別是


  1. A.
    12和12
  2. B.
    24和24
  3. C.
    24和12
  4. D.
    48和24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果一條直線與一個(gè)平面平行,那么,稱此直線與平構(gòu)成一個(gè)“平行線面線”.在一個(gè)平行六面體中,由兩個(gè)頂點(diǎn)確定的直線與含有四個(gè)頂點(diǎn)的平面構(gòu)成的“平行線面線”的個(gè)數(shù)是

A.60               B.48               C.36               D.24

查看答案和解析>>

同步練習(xí)冊(cè)答案