在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A(2,0),將向量
OA
繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)
π
3
后得向量
OB
,若向量
a
滿足|
a
-
OA
-
OB
|=1
,則|
a
|
的最大值是( 。
A、2
3
-1
B、2
3
+1
C、3
D、
6
+
2
+1
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:設(shè)
a
=(x,y),根據(jù)|
a
-
OA
-
OB
|=1
可得 (x-3)2+(y-
3
)
2
=1,故(x,y)在以M(3,
3
)為圓心,以1為半徑的圓上,再根據(jù)|
a
|=
x2+y2
的最大值為|0M|+r,計(jì)算求得結(jié)果.
解答: 解:由題意可得點(diǎn)B(1,
3
),設(shè)
a
=(x,y),則
a
-
OA
-
OB
=(x-3,y-
3
),
|
a
-
OA
-
OB
|=1
 可得 (x-3)2+(y-
3
)
2
=1,
故(x,y)在以M(3,
3
)為圓心,以1為半徑的圓上,
再根據(jù)|OM|=2
3
,可得|
a
|=
x2+y2
 的最大值為|0M|+r=2
3
+1,
故選:B.
點(diǎn)評(píng):本題主要考查兩個(gè)向量的數(shù)量積的運(yùn)算,求向量的模,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=m-|3x-4|,且不等式f(x)≥1的解集為{x|1≤x≤
5
3
}.
(1)求實(shí)數(shù)m的值;
(2)若不等式ax+1-f(x)≤0的解集為空集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①若ab>0,a>b,則
1
a
1
b
;
②若a>|b|,則a2>b2;
③若a>b,c>d,則a-c>b-d;
④若a<b,m>0,則
a
b
a+m
b+m

其中真命題的序號(hào)是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-5x-6<0},B={x||x|<2},則A∩(∁RB)=( 。
A、(-1,2)
B、[-1,2)
C、(2,6)
D、[2,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z=
1-i
2+i
在復(fù)平面上對(duì)應(yīng)的點(diǎn)的坐標(biāo)為( 。
A、(
1
5
,-
1
5
)
B、(
3
5
,-
1
5
)
C、(
1
5
,
1
5
)
D、(
1
5
,-
3
5
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=cosωx(ω>0)的圖象向右平移
π
6
個(gè)單位后與函數(shù)y=sinωx的圖象重合,則ω的值可能是( 。
A、
1
2
B、1
C、3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=|x-3|+|x|+|x-5|+|x+7|+|x+4|,求此函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,P是⊙O的直徑AB延長(zhǎng)線上的一點(diǎn),割線PCD交⊙O于C、D兩點(diǎn),弦DF與直線AB垂直,H為垂足,CF與AB交于點(diǎn)E.
(1)求證:PA•PB=PO•PE;
(2)若DE⊥CF,∠P=15°,⊙O的半徑等于2,求弦CF的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校高三數(shù)學(xué)競(jìng)賽初賽考試后,對(duì)90分以上(含90分)的成績(jī)進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示.若130~140分?jǐn)?shù)段的人數(shù)為2人.
(Ⅰ)求90~140分之間的人數(shù);
(Ⅱ)求這組數(shù)據(jù)的眾數(shù)M及平均數(shù)N;
(Ⅲ)現(xiàn)根據(jù)初賽成績(jī)從第一組和第五組(從低分段到高分段依次為第一組、第二組、…、第五組)中共選出兩人,形成幫扶學(xué)習(xí)小組.若選出的兩人成績(jī)之差大于20,則稱這兩人為“黃金搭檔組”,試求選出的兩人為“黃金搭檔組”的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案