23、設(shè)f (x)是定義在R上的偶函數(shù),若f(x)在[0,+∞)是增函數(shù),且f(2)=0,則不等式f(x+1)>0的解集為
(-∞,-3)∪(1,+∞).
分析:由已知中函數(shù)f(x)是定義在實(shí)數(shù)集R上的偶函數(shù),根據(jù)偶函數(shù)在對(duì)稱區(qū)間上單調(diào)性相反,結(jié)合f(x)上在(0,+∞)為單調(diào)增函數(shù),易判斷f(x)在(-∞,0]上的單調(diào)性,根據(jù)單調(diào)性的定義即可求得.
解答:解:由題意,x+1>2或x+1<-2,解得x>1或x<-3,
故答案為:(-∞,-3)∪(1,+∞).
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)單調(diào)性的應(yīng)用,其中利用偶函數(shù)在對(duì)稱區(qū)間上單調(diào)性相反,判斷f(x)在(-∞,0]上的單調(diào)性是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且y=f(x)的圖象關(guān)于直線x=
12
對(duì)稱,則f(1)+f(2)+f(3)+f(4)+f(5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

例2.設(shè)f(x)是定義在[-3,
2
]上的函數(shù),求下列函數(shù)的定義域(1)y=f(
x
-2)
(2)y=f(
x
a
)(a≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在[-1,1]上的奇函數(shù),g(x)的圖象與f(x)的圖象關(guān)于直線x=1對(duì)稱,而當(dāng)x∈[2,3]時(shí),g(x)=-x2+4x-4.
(Ⅰ)求f(x)的解析式;
(Ⅱ)對(duì)任意x1,x2∈[0,1],且x1≠x2,求證:|f(x2)-f(x1)|<2|x2-x1|;
(Ⅲ)對(duì)任意x1,x2∈[0,1],且x1≠x2,求證:|f(x2)-f(x1)|≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的周期為3的周期函數(shù),如圖表示該函數(shù)在區(qū)間(-2,1]上的圖象,則f(2013)+f(2014)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•內(nèi)江一模)設(shè)f(x)是定義在R上的偶函數(shù),對(duì)任意x∈R,都有f(x-2)=f(x+2)且當(dāng)x∈[-2,0]時(shí),f(x)=(
1
2
x-1,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)恰有3個(gè)不同的實(shí)數(shù)根,則a的取值范圍是
34
,2)
34
,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案