已知函數(shù)f(x)=b•ax,(其中a,b為常數(shù)且a>0,a≠1)的圖象經(jīng)過點(diǎn)A(1,6),B(3,24)
(1)求f(x)的解析式;
(2)若不等式(
1
a
)x+(
1
b
)x+1-2m≥0
在x∈(-∞,1]上恒成立,求實(shí)數(shù)m的取值范圍.
分析:(1)由函數(shù)f(x)=b•ax,(其中a,b為常數(shù)且a>0,a≠1)的圖象經(jīng)過點(diǎn)A(1,6),B(3,24),知
a•b=6
b•a3=24
,由此能求出f(x).
(2)設(shè)g(x)=(
1
a
x+(
1
b
x=(
1
2
x+(
1
3
x,則y=g(x)在R上是減函數(shù),故當(dāng)x≤1時(shí),g(x)min=g(1)=
5
6
.由此能求出實(shí)數(shù)m的取值范圍.
解答:解:(1)∵函數(shù)f(x)=b•ax,(其中a,b為常數(shù)且a>0,a≠1)的圖象經(jīng)過點(diǎn)A(1,6),B(3,24),
a•b=6
b•a3=24
,解得a=2,b=3,
∴f(x)=3•2x
(2)設(shè)g(x)=(
1
a
x+(
1
b
x=(
1
2
x+(
1
3
x,
∴y=g(x)在R上是減函數(shù),
∴當(dāng)x≤1時(shí),g(x)min=g(1)=
5
6

∴(
1
a
x+(
1
b
x+1-2m≥0在x∈(-∞,1]上恒成立,
即2m-1
5
6

解得m
11
12

故實(shí)數(shù)m的取值范圍是(-∞,-
11
2
].
點(diǎn)評(píng):本題考查函數(shù)解析式的求法,考查滿足條件的實(shí)數(shù)的取值范圍的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=b•ax(其中a,b為常量,且a>0,a≠1)的圖象經(jīng)過點(diǎn)A(1,6),B(3,24).
(1)求f(x);
(2)若不等式(
1
a
x+(
1
b
x-m≥0在x∈(-∞,1]時(shí)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=b•ax(a>0且a≠1),且f(k)=8f(k-3)(k≥4,k∈N*).
(1)若b=8,求f(1)+f(2)+…+f(n)(n∈N*);
(2)若f(1)、16、128依次是某等差數(shù)列的第1項(xiàng),第k-3項(xiàng),第k項(xiàng),試問:是否存在正整數(shù)n,使得f(n)=2(n2-100)成立,若存在,請(qǐng)求出所有的n及b的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=b•ax(其中a,b為常量,且a>0,a≠1)的圖象經(jīng)過A(1,
1
6
),B(3,
1
24
)

(1)試確定f(x)的解析式;
(2)若不等式(
1
a
)x+(
1
b
)x
≤m在x∈(-∞,1]時(shí)恒成立,求實(shí)數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=b(x+1)lnx-x+1,斜率為l的直線與函數(shù)f(x)的圖象相切于(1,0)點(diǎn).
(Ⅰ)求h(x)=f(x)-xlnx的單調(diào)區(qū)間;
(Ⅱ)當(dāng)實(shí)數(shù)0<a<1時(shí),討論g(x)=f(x)-(a+x)lnx+
1
2
a
x
2
 
的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=b•ax(其中a,b為常量且a>0,a≠1)的圖象經(jīng)過點(diǎn)A(1,6),B(3,24),
(1)試確定f(x);
(2)若不等式(
1
a
) x+(
1
b
) x-m≤0在x∈[0,+∞)上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案