9.計算:$\underset{lim}{x→0}(1+2x)^{\frac{1}{x}}$.

分析 換元,利用第二類重要極限,即可求得答案.

解答 解:令u=2x,當(dāng)x→0,u→0,
∴$\underset{lim}{x→0}(1+2x)^{\frac{1}{x}}$=$\underset{lim}{x→0}$$[(1+2x)^{\frac{1}{2x}}]^{2}$=[$\underset{lim}{u→0}$$(1+u)^{\frac{1}{u}}$]2=e2,
∴$\underset{lim}{x→0}(1+2x)^{\frac{1}{x}}$=e2

點評 本題考查第二類極限的應(yīng)用,考查轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=sin(2x-$\frac{π}{4}$)+cos(2x-$\frac{3π}{4}$),x∈R.
(1)求f(x)的最小正周期和最大值;
(2)已知α,β∈(0,$\frac{π}{2}$),且f(α)=$\sqrt{2}$,cos(α+β)=$\frac{1}{3}$,求tanβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)隨機向量η服從正態(tài)分布N(1,σ2),若P(η<-1)=0.2,則函數(shù)f(x)=$\frac{1}{3}{x^3}+{x^2}+{η^2}$x沒有極值點的概率是0.7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)=x3-6bx+3b在(0,1)內(nèi)有極小值,則實數(shù)b的取值范圍是( 。
A.(0,$\frac{1}{2}$)B.(-∞,1)C.(0,+∞)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某礦業(yè)公司對A、B兩個鐵礦項目調(diào)研結(jié)果是:A項目獲利40%的可能性為0.6,虧損20%的可能性為0.4;B項目獲利35%的可能性為0.6,虧損10%的可能性為0.2,不賠不賺的可能性為0.2.現(xiàn)計劃用不超過100萬元的資金投資A、B兩個項目,假設(shè)投資A項目的資金為x(x≥0)萬元,投資B項目的資金為y(y≥0)萬元,且公司要求對A項目的投資不得低于B項目.
(1)請根據(jù)公司投資限制條件,寫出x,y滿足的條件,并將它們表示在平面xOy內(nèi);
(2)記投資A、B項目的利潤分別為M和N,試寫出隨機變量M與N的分布列和期望E(M),E(N);
(3)根據(jù)(1)的條件和調(diào)研結(jié)果,試估計兩個項目的平均利潤之和z=E(M)+E(N)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知點P在曲線$y=\frac{1}{e^x}(x>0)$上,α為曲線在點P處的切線的傾斜角,則α的取值范圍是($\frac{3π}{4}$,π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某班主任對全班40名學(xué)生進行了作業(yè)量多少的調(diào)查.?dāng)?shù)據(jù)如下表:
認為作業(yè)多認為作業(yè)不多總計
喜歡玩游戲2010
不喜歡玩游戲28
總計
(Ⅰ)請完善上表中所缺的有關(guān)數(shù)據(jù);
(Ⅱ)根據(jù)表中數(shù)據(jù),問是否有95%的把握認為“喜歡玩游戲與作業(yè)量的多少有關(guān)系”?
P(x2≥k)0.100    0.050    0.010
k2.706    3.841    6.635
附:χ2=$\frac{{n{{(n}_{11}n}_{22}{{-n}_{12}n}_{21})}^{2}}{{(n}_{11}{+n}_{12}){(n}_{21}{+n}_{22}){(n}_{11}{+n}_{21}){(n}_{12}{+n}_{22})}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.?dāng)?shù)列{an}中,a1=3,且an+1=an-2(n∈N*),則a8=( 。
A.17B.19C.-13D.-11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知正數(shù)a,b滿足a2+b2=1,則ab的最大值為( 。
A.1B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊答案