已知函數(shù)f(x)=設(shè)計(jì)一個(gè)算法求函數(shù)的任一函數(shù)值.

答案:
解析:

  解:算法:第一步:輸入a;

  第二步:若a≥2,則執(zhí)行第三步,若a<2,則執(zhí)行第四步;

  第三步:輸出a2-a+1;

  第四步:輸出a+1.

  分析:此函數(shù)是分段函數(shù),在不同區(qū)間上的函數(shù)解析式不同,函數(shù)值與自變量的范圍有關(guān),必須討論自變量與2的關(guān)系.比如求x=a時(shí)f(a)的值可設(shè)計(jì)如上的算法.


提示:

這是求分段函數(shù)的函數(shù)值的一個(gè)最基本的算法.比如:求f(3),則f(3)=32-3+1=7;求f(-3);則f(-3)=-3+1=-2.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:高考總復(fù)習(xí)全解 數(shù)學(xué) 一輪復(fù)習(xí)·必修課程。ㄈ私虒(shí)驗(yàn)版) B版 人教實(shí)驗(yàn)版 B版 題型:044

已知函數(shù)f(x)=ax-x2的最大值不大于,又當(dāng)x∈[]時(shí),f(x)≥

(1)求a的值;

(2)設(shè)0<a1,an+1=f(an),n∈N*,證明an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1),設(shè)h(x)=f(x)-g(x).

(1)求函數(shù)h(x)的定義域;

(2)判斷h(x)的奇偶性,并說明理由;

(3)若f(3)=2,求使h(x)>0成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西贛州四所重點(diǎn)中學(xué)高三上學(xué)期期末聯(lián)考文數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=x2-(a-1)x-b-1,當(dāng)x∈[b, a]時(shí),函數(shù)f(x)的圖像關(guān)于y軸對稱,數(shù)列的前n項(xiàng)和為Sn,且Sn=f(n).

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)設(shè),Tn=b1+b2++bn,若Tn>2m,求m的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省、岳陽縣一中高三11月聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)(第一問8分,第二問5分)

已知函數(shù)f(x)=2lnxg(x)=ax2+3x.

(1)設(shè)直線x=1與曲線yf(x)和yg(x)分別相交于點(diǎn)P、Q,且曲線yf(x)和yg(x)在點(diǎn)PQ處的切線平行,若方程f(x2+1)+g(x)=3xk有四個(gè)不同的實(shí)根,求實(shí)數(shù)k的取值范圍;

(2)設(shè)函數(shù)F(x)滿足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導(dǎo)函數(shù);試問是否存在實(shí)數(shù)a,使得當(dāng)x∈(0,1]時(shí),F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省十二校高三第一次聯(lián)考數(shù)學(xué)文卷 題型:解答題

( (本小題滿分13分)

已知函數(shù)f(x)=(a-1)xaln(x-2),(a<1).

(1)討論函數(shù)f(x)的單調(diào)性;

(2)設(shè)a<0時(shí),對任意x1、x2∈(2,+∞),<-4恒成立,求a的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案