在平面直角坐標(biāo)系xOy中,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
上一點(diǎn)到橢圓E的兩個(gè)焦點(diǎn)距離之和為2
3
,橢圓E的離心率為
6
3

(1)求橢圓E的方程;
(2)若b為橢圓E的半短軸長(zhǎng),記C(0,b),直線(xiàn)l經(jīng)過(guò)點(diǎn)C且斜率為2,與直線(xiàn)l平行的直線(xiàn)AB過(guò)點(diǎn)(1,0)且交橢圓于A、B兩點(diǎn),求△ABC的面積S的值.
分析:(1)由題設(shè)條件,先求出a,b,c的值,然后再求橢圓E的方程.
(2)由題設(shè)知點(diǎn)C(0,1),直線(xiàn)L的方程為:y=2x+1,直線(xiàn)AB的方程為:y=2x-2.設(shè)A(x1,y1),B(x2,y2),將y=2x-2代入橢圓E的方程
x2
3
+y2=1
,整理可得:13x2-24x+9=0,再由根與系數(shù)的關(guān)系和點(diǎn)到直線(xiàn)的距離公式能夠求出△ABC的面積S的值.
解答:解:(1)由題意,得
2a=2
3
c
a
=
6
3
a2=b2+c2
(2分)
a=
3
b=1
c=
2
.
(4分)
∴橢圓E的方程為
x2
3
+y2=1
(5分)
(2)由(1)可知點(diǎn)C(0,1),易知直線(xiàn)L的方程為:y=2x+1(6分)
直線(xiàn)AB的方程為:y=2x-2(7分)
設(shè)A(x1,y1),B(x2,y2),將y=2x-2代入橢圓E的方程
x2
3
+y2=1

整理可得:13x2-24x+9=0,(8分)
x1+x2=
24
13
,x1x2=
9
13
,可得|x1-x2|=
6
3
13
(10分)
|AB|=
1+22
|x1-x2|=
5
×
6
3
13
(11分)
設(shè)點(diǎn)C(0,1)到直線(xiàn)AB的距離為d,由點(diǎn)到直線(xiàn)的距離公式可得:d=
3
1+22
=
3
5
(13分)
∴△ABC的面積S=
1
2
×|AB|×d=
1
2
×
5
×
6
3
13
×
3
5
=
9
3
13
.(14分)
點(diǎn)評(píng):本題考查圓錐曲線(xiàn)的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,注意挖掘條件,合理地運(yùn)用韋達(dá)定理和點(diǎn)到直線(xiàn)的距離公式進(jìn)行解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,已知圓心在直線(xiàn)y=x+4上,半徑為2
2
的圓C經(jīng)過(guò)坐標(biāo)原點(diǎn)O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿(mǎn)足PF=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線(xiàn)AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線(xiàn)QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線(xiàn)l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案