用反證法證明命題“:若 a,b∈N,ab能被3整除,那么a,b中至少有一個(gè)能被3整除”時(shí),假設(shè)應(yīng)為( 。
分析:“a,b中至少有一個(gè)能被3整除”的對(duì)立面是:“a,b都不能被3整除”,得到假設(shè).
解答:解:反證法證明命題時(shí),應(yīng)假設(shè)命題的反面成立.“a,b中至少有一個(gè)能被3整除”的反面是:
“a,b都不能被3整除”,故應(yīng)假設(shè) a,b都不能被3整除,
故選 D.
點(diǎn)評(píng):本題考查用反證法證明命題,應(yīng)假設(shè)命題的反面成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4、用反證法證明命題“a•b(a,b∈Z*)是偶數(shù),那么a,b中至少有一個(gè)是偶數(shù).”那么反設(shè)的內(nèi)容是
假設(shè)a,b都是奇數(shù)(a,b都不是偶數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明命題:“a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,則a,b,c,d中至少有一個(gè)負(fù)數(shù)”時(shí)的假設(shè)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明命題“如果AB∥CD,AB∥EF,那么CD∥EF”,證明的第一個(gè)步驟是
假設(shè)CD和EF不平行
假設(shè)CD和EF不平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明命題“若a、b∈N,ab能被2整除,則a,b中至少有一個(gè)能被2整除”,那么反設(shè)的內(nèi)容是
a、b都不能被2整除
a、b都不能被2整除

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明命題“a、b、c、d中至少有一個(gè)是負(fù)數(shù)”時(shí),假設(shè)正確的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案