分析 (1)設(shè)雙曲線方程為x2-y2=λ,點(diǎn)代入求出參數(shù)λ的值,從而求出雙曲線方程;
(2)先求出$\overrightarrow{{F}_{1}M}$,$\overrightarrow{{F}_{2}M}$的坐標(biāo),把點(diǎn)M(3,m)代入雙曲線,由數(shù)量積的坐標(biāo)表示可得出$\overrightarrow{{F_1}M}•\overrightarrow{{F_2}M}=0$;
(3)求出三角形的高,即|m|的值,運(yùn)用三角形的面積公式可得其面積.
解答 解:(1)由離心率e=$\sqrt{2}$,則c=$\sqrt{2}$a,b=$\sqrt{{c}^{2}-{a}^{2}}$=a,
可設(shè)所求雙曲線方程為x2-y2=λ(λ≠0)
則由點(diǎn)(4,-$\sqrt{10}$)在雙曲線上,
知λ=42-(-$\sqrt{10}$)2=6,
則雙曲線方程為x2-y2=6;
(2)證明:若點(diǎn)M(3,m)在雙曲線上,
則32-m2=6∴m2=3,
由雙曲線x2-y2=6,知F1(-2$\sqrt{3}$,0),F(xiàn)2(2$\sqrt{3}$,0),
又$\overrightarrow{{F}_{1}M}$=(2$\sqrt{3}$+3,m),$\overrightarrow{{F}_{2}M}$=(3-2$\sqrt{3}$,m),
則$\overrightarrow{{F}_{1}M}$•$\overrightarrow{{F}_{2}M}$=(2$\sqrt{3}$+3)(3-2$\sqrt{3}$)+m2=9-12+3=0;
(3)△F1MF2的面積為S=$\frac{1}{2}$×2c•|m|=c|m|
=2$\sqrt{3}$×$\sqrt{3}$=6.
點(diǎn)評 本題考查雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用.解答的關(guān)鍵是對雙曲線標(biāo)準(zhǔn)方程的理解和向量運(yùn)算的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $-\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com